Rss

  • linkedin

Archives for : optimointi

Päätöksiä ristiriitaisten tavoitteiden maailmassa

”Haluan ostaa asunnon, joka olisi hyväkuntoinen ja sijainti on keskeinen, mutta asuinalueen pitäisi olla rauhallinen. Hinnan pitäisi myös olla edullinen.”

”Perheellemme pitäisi löytää lomakohde, josta löytyy mielenkiintoista tekemista isälle, äidille ja lapsille. Reissu ei saisi olla kuitenkaan kohtuuttoman kallis.”

”Haluan sijoittaa rahani niin että varallisuuteni kasvaisi mahdollisimman suureksi, mutta rahan häviämisen riski olisi mahdollisimman pieni.”

Yllä olevat kommentit kuvaavat erilaisia valintatilanteita, missä on useampi kuin yksi tavoite. Lisäksi tavoitteet ovat ainakin osittain ristiriitaisia. Tämä tarkoittaa sitä ettei ole olemassa sellaista ratkaisua, joka olisi optimaalinen kaikkien tavoitteiden suhteen. Joudumme siis etsimään kompromisseja.

Kompromissiloma

Toisessa kommentissa isän unelmaloma voisi olla Valioliiga-ottelun näkeminen Liverpoolissa, äidin surffausloma Balilla ja lapset haluaisivat Disney Worldiin. Kompromissivalinta voisi olla esimerkiksi Malaga, missä pääsee katsomaan Espanjan jalkapalloliigaa, löytyy merenranta surffaukseen (vaikkei aallot vastaakaan Balia) sekä vesipuisto lapsille. Jokaisen perheenjäsenen tavoitteessa jouduttiin hieman antamaan periksi. Silti valinta tyydyttää kaikkia ja budjetti on vanhemmille miellyttävämpi kuin Euroopan ulkopuolisissa kohteissa. Tämän tyyppisiä valintatilanteissa turvaudutaan monitavoitteiseen (tai monikriteeriseen) päätöksentekoon.

Kun useat tavoitteet vetävät eri suuntiin, pitää löytää paras mahdollinen kompromissi

Varaston optimointia

Sen kunniaksi että ikuisuusprojektin viittaa kantanut toinen väitöskirjaani tuleva artikkeli vihdoin syksyllä julkaistiin, käyn tässä läpi monitavoiteoptimointia artikkelissa olevan sovelluskohteen näkökulmasta. Kyseessä on yrityksen varaston optimointiongelma: päätöksentekijänä on ostopäällikkö, jonka pitää päättää kuinka paljon tilataan varastoon alihankkijalta tavaraa, jonka toimitusaika on 3 kk. Kyseessä oli teollisuusyritys ja tilattava tavara oli kallis komponentti, jota tarvitaan lopputuotteen valmistamiseen. Matematiikka kuitenkin täsmää vaikka tavara olisi tukkukauppiaalta tilattava valmis tuote jälleenmyytäväksi.

Yrityksen ostotoimintoihin ja varaston ylläpitöön liittyy useita kustannuksia. Esimerkiksi kuljetuskustannukset, pääomakustannukset (yrityksen varoja sitoutuu varaston tuotteisiin) ja tuotteiden vanheneminen/pilaantuminen. Mikäli ostopäällikkö pelkästään minimoisi kustannuksiaan, hänen ei koskaan kannattaisi tilata mitään. Ikävänä sivuseurauksena silloin yrityksen liiketoimintakin loppuisi kun ei ole mitään myytävää.

Ostopäällikon ongelma on siis seuraava:

– jos hän tilaa usein / paljon tavaraa varastoon, kustannukset nousevat pilviin

– jos hän tilaa liian vähän, kaikille asiakkaille ei riitä lopputuotetta myytäväksi.

Ostopäällikön liian suuret tilaukset aiheuttavat säpinää varastossa

Eräs ratkaisu on arvioida, mikä kustannus yritykselle tulee yhdestä pettyneestä asiakkaasta ja lisätä tämä muihin varastointikustannuksiin, jolloin tilauspäätös voitaisiin tehdä kaikkia näitä kustannuksia minimoimalla. Nyt oleellisia kysymyksiä ovat:

– Kuinka paljon yksi pettynyt asiakas pitkällä tähtäimellä maksaa?

– Onko yrityksen brändiarvon heikkeneminen lineaarista vai onko 5:n peräkkäisen pettymyksen hinta suurempi kuin 5 kertaa yksi pettymys?

Sen sijaan että ravistelee hihasta euromääräisen hinnan asiakkaan pettymykselle, on mahdollista mitata ajallaan palveltujen asiakkaiden määrää omalla mitta-asteikollaan. Eli ei yritäkään muuttaa asiakkaiden kokemia pettymyksiä Euroiksi. Tästä pääsemmekin monitavoiteoptimoinnin maailmaan.

Kahden tavoitteen optimointi yhtäaikaa

Nyt meillä on päätöksenteolle kaksi tavoitetta:

1. varastointikustannusten minimointi

2. asiakkaiden palvelutason maksimointi

Nämä ovat ristiriitaisia tavoitteita, koska ensimmäisen tavoitteen kannalta pitäisi tilata varastoon mahdollisimman vähän ja toisen kannalta mahdollisimman paljon. Sopivan kompromissin löytämisen avuksi tulee käsite Pareto-optimaalisuus.

Tutkimuksessa ostopäällikön ostostrategiassa käsiteltiin kolmea aikapistettä yhtäaikaa: kuinka paljon tilataan ensimmäisessä mahdollisessa erässä, kuinka paljon seuraavassa ja kuinka paljon sen seuraavassa. Yhden eräkoon vaihdellessa välillä 0-250 kpl, mahdollisia kombinaatioita on 251^3 = 15813251 kpl. Otetaan tässä kuitenkin käsittelyyn hieman yksinkertaistettu kuvitteellinen esimerkki, missä eräkoko voi vaihdella välillä 0-9, jolloin kombinaatioita on ”vain” 1000 kpl. Ne on kuvattu pisteinä alla olevassa koordinaatiossa. Tässä esimerkissä oletetaan 100€ kiinteä kuljetus- ja käsittelykustannus aina kun tilataan nollaa suurempi erä.

Kuvaajassa vaaka-akselilla on odotettu palvelutaso (kuinka suuri %-osuus kysynnästä saadaan ajallaan tyydytettyä) ja pystyakselilla odotetut kustannukset eri tilausmäärä-valinnoilla. Hyvät vaihtoehdot sijaitsevat alhaalla oikealla, mutta mikä valinnoista on paras? Tähän ei ole yksiselitteistä vastausta, mutta sen sijaan me osaamme sanoa, mitkä eivät ainakaan ole parhaita. ”Harmaiden pisteiden sanotaan olevan dominoituja, koska yhden tavoitteen parantamiseksi ei toisesta tavoitteesta tarvitse tinkiä.”

Sen sijaan punaisia pisteitä ei ole dominoitu. Mikäli punaista ratkaisua haluaa parantaa yhdessä tavoitteessa, on pakko heikentää toista tavoitetta. Näitä punaisia ratkaisuja sanotaan Pareto-optimaalisiksi. Ostopäällikön tehtäväksi jää näistä Pareto-optimaalisten ratkaisujen joukosta löytää näkemystään hyödyntäen sopivin kompromissi.

Jos viime aikoina on usealle asiakkaalle jouduttu myymään ”ei oota” ostopäällikkö saattaisi nyt pelata varman päälle ja tavoitella lähelle 100% olevaa palvelutasoa. Lopullinen valinta voisi olla ympyröity piste. Tällä valinnalla odotettavissa on 97.6% palvelutaso (vaaka-akseli) ja 390 euron (pystyakseli) varastointikustannukset. Siihen päästään kun tilataan varastoon ensimmäisessä erässä 9, toisessa 9 ja kolmannessa 0 tuotetta.

Tämä esimerkki kuvaa myös eroa monitavoiteoptimoinnin ja rajoitetun optimoinnin välillä. Mikäli ostopäällikkö olisi määrittänyt rajoitteeksi 98% palvelutason (sininen pystyviiva) ja minimoinut sitten pelkästään kuluja, hän olisi päätynyt pystyviivan oikealla puolella olevaan ratkaisuun. Siten hän ei olisi koskaan saanut tietää että vain 0.04%-yks. pudotuksella 98% tavoitteesta pystyi saamaan merkittävän n. 70€ säästön. Tätä säästöä selittää 100€ säästö kuljetus- ja käsittelykutannuksissa kun kolmas tilauserä jätetään nollaksi.

Ratkaisujen laskeminen

Kun mahdollisia päätöksiä (tai päätöskombinaatioita) on miljoonia tai jatkuvien muuttujien tapauksessa rajaton määrä, kaikkien mahdollisten ratkaisujen laskeminen veisi aivan liian paljon aikaa myös nopeimmilta tietokoneilta. Niinpä on kehitetty laskenta-algoritmeja, jotka etsivät pelkästään Pareto-optimaalisia ratkaisuja päätöksentekijän toiveiden mukaisesti. Algoritmeja on paljon erilaisia erilaisiin sovelluksiin, mutta tunnetuin yleiskäyttöinen algoritmi lienee NSGA (Non-dominated Sorting Genetic Algorithm).

Vielä lisää tavotteita

Tavoitteiden määrä ei välttämättä rajoitu kahteen. Tutkimuksessa ostopäälliköllä oli vielä kolmaskin tavoite: varaston kiertonopeus (=kuinka usein tavara vaihtuu varastossa). Vaikka kiertonopeus korreloikin varastointikustannuksen kanssa, se tuo tärkeää lisäinformaatiota ostopäällikölle. Mikäli kiinteät kuljetus- ja käsittelykustannukset ovat korkeat, kustannusten minimointi suosii isoja kertatilauksia. Isot tilausmäärät kuitenkin pienentävät varaston kiertonopeutta tuottaen käytännön ongelmia varastotilojen riittävyyteen, varastotyöntekijöiden työturvallisuuteen ja nostavat riskiä että tuotteet vanhenevat varastoon.

Vaikka kolmen tavoitteen pohjalta muodostettu Pareto-optimaalisten ratkaisujen joukko on hankalampaa (ja neljän tavoiteen mahdoton) visualisoida koordinaatistossa, monitavoiteoptimointialgoritmit kyllä hoitavat Pareto-optimaalisten ratkaisujen etsimisen samoin kuin kahden tavoitteen tapauksessa.

Kysynnän ennustaminen

Päätöksentekijällä on vielä yksi ongelma. Tavoitteiden laskemiseen tarvitaan tietoa tulevien kuukausien kysynnästä lopputuotteelle, mutta yleensä tätä ei varmaksi tiedetä etukäteen. Sen sijaan historiadatan avulla pystymme arvioimaan todennäköisyyksiä erilaisille kysyntäskenaarioille. Tähän sukellamme tarkemmin jossain toisessa blogikirjoituksessa, mutta mikäli asia kiinnostaa voit tutustua tähän kaikkeen lukemalla itse artikkelin. Virallinen julkaisu löytyy maksumuurin takaa täältä, mutta yliopistolla on myös ilmainen rinnakkaisjulkaisu vähemmän viimeistellystä versiosta, joka löytyy täältä.

Yhteenveto

Yksi tapa kuvata monitavoitteista päätöksentekoprosessia on Daniel Kahnemanin populariosoiman kahden ajattelusysteemin (lue esittely esim. täältä) yhdistäminen. Ensiksi käytetään hidasta, eli 2-systeemin, ajattelua määrittelemällä päätökseen hyvyyteen vaikuttavat tavoitteet. Laskenta-algoritmeja hyödyntämällä näiden tavoitteiden perusteella karsitaan huonot vaihtoehdot pois. Jäljelle jääneistä Pareto-optimaalisista vaihtoehdoista tehdään lopullinen valinta nopeaa, eli 1-systeemin, ajattelua hyödyntäen. Näin saadaan sulavasti tietokoneen laskentateho sekä ihmisen näkemys ja intuitio tekemään yhteistyötä tilanteeseen sopivan kompromissin etsimisessä.

Facebooktwitterredditpinterestlinkedinmail

Analytiikan alalajit

Sijoittajamestari Ray Dalio kokosi elämässään oppimansa asiat teokseen Principles ja päätökseen tekoon liittyvä ensimmäinen periaate kuuluu näin:

”Recognize that 1) the biggest threat to good decision making is harmful emotions, and 2) decision making is a two-step process (first learning and then deciding).”

Ray Dalio

Datan analysointi tai datatieteily liityy nimenomaan ympäristöstä oppimiseen ilman tunteiden aiheuttamia vääristäviä tunteita niin että voitaisiin tehdä mahdollisimman valistuneita päätöksiä.

Kun tehdään liiketoimintaa tukevaa analyysiä, datan analysointi jaetaan tyypillisesti neljään alalajiin riippuen, mitä työllä tavoitellaan. Eri konsultit voivat järjestellä ne hieman eri tavoilla, mutta itse mielelläni järjestäen ne seuraavasti analyyttisen haastavuuden mukaan helpoimmasta vaikeimpaan:

  1. Kuvaileva analytiikka (Mitä tapahtui?)
  2. Ennakoiva analytiikka (Mitä tulee tapahtumaan?)
  3. Diagnosoiva analytiikka (Miksi jotain tapahtui?)
  4. Ohjaileva analytiikka (Mitä kannattaisi tehdä?)

Kolme ensimmäistä liittyy oppimiseen ja viimeinen päätöksentekoon opitun pohjalta.

Hukkuvat jäätelönsyöjät

Avataan sitten näitä alalajeja esimerkin avulla. Hukkuvat jäätelönsyöjät on monelle jo liiankin tuttu esimerkki riippuvuussuhteista, mutta ratsastetaan nyt vielä kerran sillä, koska se kaikessa tomppeluudessaan kuitenkin hyvin demonstroi oleellisia pointteja.

Olkoon meillä toimeksiantona jäätelökioskiyrittäjän auttaminen ja myyntiä ilmiönä kuvaa seuraava graafi.

Lämpötilan nousu aiheuttaa enemmän sekä jäätelön myyntiä että hukkumiskuolemia. Hukkumisen ja jäätelön myynnin välillä ei ole syy-seuraus-yhteyttä.

Graafissa olevien syy-seuraus-yhteyksien pohjalta olen nyt simuloinut 300 havaintoa, jonka kanssa seuraavissa esimerkeissä operoidaan.

Kuvaileva analytiikka

Kuvaileva analytiikka vastaa siis kysymykseen ”Mitä tapahtui?”. Vastaus löytyy raporteista, joissa on tilastollisista tunnuslukuja ja graafisia kuvioita. Yritysmaailmassa tätä analytiikan alalajia kutsutaan termillä Business Intelligence (BI). Meidän dataa 300 aiemmasta viikkohavainnosta kuvaavat esim. seuraavat tunnusluvut.

TEMP (C)SALES (EUR)DROWNED
Keskiarvo19.6130351.15
Keskihajonta5.3413153.52

Lisäksi mielenkiinnon mukaan tunnuslukuja voisi vertailla eri ryhmien, esim. viikonpäivien tai jäätelömakujen, välillä.

Keski- ja hajontalukujen lisäksi havaintoja voi kuvata muuttujien välisillä korrelaatiokertoimilla ja graafisilla kuvaajilla. Seuraava graafi ei ole välttämättä kauneimmasta päästä, mutta minulle sen piirtäminen on osa perusprosessia uuteen aineistoon tutustuttaessa. Siinä on paljon informaatiota tiiviisti ilmaistuna ja sen saa tulostettua R-ohjelmistolla yhdellä komennolla.

Lävistäjällä ovat jokaisen muuttujan omat jakaumat. Vasemmalla alhaalla ovat parittaiset sirontakuviot. Oikella ylhäällä ovat parittaiset korrelaatiokertoimet ja niiden merkitsevyystasot tähtinä.

Kuvaajasta nähdään mm. seuraavaa:

  • Lämpötilan ja myynnin havainnot ovat jakautuneet symmetrisesti keskiarvon ympärille ja muistuttaa normaalijakaumaa. Hukkumisten lukumäärän jakauma on vino.
  • Kaikkien muuttujien väliset korrelaatiokertoimet (luvut oikealla ylhäällä) ovat positiivisia, joten muuttujilla on ollut taipumus saada isoja arvoja yhtäaikaa.
  • Kaikki muuttujien väliset korrelaatiokertoimet ovat tilastollisesti erittäin merkitseviä (punaiset tähdet), joten ei ole uskottavaa että korrelaatiokertoimet poikkeavat nollasta vain sattumalta.
  • Suora viiva kuvaa hyvin myynnin ja lämpötilan välistä yhteyttä. Hukkumisen ja muiden muuttujien välisen yhteyden kuvaamiseen suora viiva ei ole paras mahdollinen (kuviot vasemmalla alhaalla).

Kuvaileva analytiikka keskittyy kuvailemaan historian tapahtumia, mutta vastuu siitä, mitä tulee tapahtumaan tulevaisuudessa jää täysin raportin lukijalle.

Ennakoiva analytiikka

Vaikka historiakin on mielenkiintoista, vielä kiinnostavampaa liiketoiminnan kannalta on se mitä on odotettavissa tulevaisuudessa. Mennyt ei ole tae tulevasta, mutta historiaan perustuen voi tehdä valistuneita arvioita eri tulevaisuuden skenaarioiden todennäköisyyksistä.

Esimerkissämme mielenkiinnon kohteena on ennustaa tulevan viikon jäätelön myyntimäärä. Pelkään BI-raporttiin (kuvaileva analytiikka) perustuen paras arvaus olisi historiallinen keskiarvo 13035 euroa. Simuloin tässä 100 uutta havaintoa tulevista viikoista ja historialliseen keskiarvoon perustuva arvaus ei ole hassumpi: keskimäärin ennuste on 7.3% pielessä.

Olisimme voineet kuitenkin ottaa askel eteenpäin ennakoivan analytiikan puolelle ja muodostaa regressiomalli, jossa hyödynnetään tietoa päivän lämpötilasta. Lämpötilan ja myynnin välinen korrelaatiokerroinhan oli varsin suuri, 0.62. Tällaisen mallin tarjoama paras arvaus seuraavan viikon myynnistä menee nyt uusilla havainnoilla keskimäärin 6.5% pieleen.

Vaikka hukkumisilla ei ole syy-seuraus-suhdetta myyntiin, ei sen hyödyntämiselle ennustamisessa ole estettä. Jos sen lisää toiseksi selittäjäksi samaan regressiomalliin lämpötilan kanssa ei siitä iloa kuitenkaan ole, koska lämpötila jo yksinään selittää hukkumisten ja myynnin välisen yhteyden. Mutta mikäli vahingossa olisimme hukanneet historian lämpötilahavainnot, olisi hukkumiskuolemat hyvä apumuuttuja. Pelkästään edellisen viikon hukkumisiin perustuvat ennusteet ovat tässä tapauksessa 6.7% pielessä. Lopuksi vielä yhteenveto, kuinka tarkasti saatiin 100 uutta myyntihavaintoa ennustetttua.

EnnustajaKeskimääräinen virhe
Oma historia7.33%
Lämpötila6.45%
Hukkumiset6.73%
Lämpötila+Hukkumiset6.43%

Regressiomallien lisäksi muita ennustamisen työkaluja ovat aikasarja-analyysi silloin kun kiinnitetään erityistä huomiota ajassa systemaattisesti toistuviin kuvioihin. Sitten kun käsillä on ajassa stabiili ilmiö, mutta paljon potentiaalisia selittäjiä sekä paljon dataa, arvoon arvaamattomaan nousevat erilaiset koneoppimisalgoritmit kuten neuroverkot tai päätöspuut. Mikäli useiden potentiaalisten selittäjien lisäksi meillä on hieman ymmärrystä näiden selittäjien keskinäisistä riippuuvuussuhteista, voidaan dataa ja asiantuntemusta yhdistää Bayes-verkkojen avulla tai simuloimalla maailman menoa ymmärryksemme rajoissa.

Käyttipä mitä tahansa näistä ennustusmenetelmistä tai jotain niiden yhdistelmää, meillä on kaksi ikävää kiusaa:

  • Ylisovittaminen: tietämättämme yritämme tulevaisuutta ennustaa sellaisilla historiallisilla piirteillä, jotka ovat toteutuneet aiemmin vain sattumalta eivätkä kuvaa ilmiötä tulevaisuudessa. Tätä ongelmaa olen ruotinut aiemmin tässä kirjoituksessa.
  • Pysyvät muutokset muuttujissa, joita ei olla aiemmin mitattu. Esimerkiksi lakimuutokset voivat ohjata ihmisiä käyttäytymään tulevaisuudessa eri tavalla kuin mihin aiemmin olemme tottuneet. Tätä ongelmaa olen käsitellyt tarkemmin tässä kirjoituksessa.

Kiitos mm. edellä mainittujen haasteiden ennakoivassa analytiikassa vaaditaan jo huomattavasti korkeamman tason koulutusta kuin kuvailevassa analytiikassa.

Diagnosoiva analytiikka

Diagnosoivalla analytiikalla pyritään löytämään asioiden välisiä syy-seuraus-yhteyksiä. Tieteellisen uteliaisuuden lisäksi liiketoiminnan kannalta kiinnostavaa voisi olla selvittää, mitä asioita muuttamalla saisimme myyntiä kasvatettua. Ennakoivan analytiikan maailmassa korrelaatiokertoimet antoivat hyviä vinkkejä, mitä muuttujia voisimme hyödyntää ennustamisessa. Kun tavoitteena on puuttua itse peliin asioiden muuttamiseksi, vain korrelaatioita tuijottamalla voisimme päätyä raportoimaan jäätelöyrittäjälle: ”Myynnin edistämiseksi kannattaa alkaa hukuttamaan ihmisiä”. Tämähän ei alkuunkaan pidä paikkansa niinkuin kohta tullaan näkemään.

Varmin tapa syy-seuraus eli kausaaliyhteyden selvittämiseksi on tehdä satunnaisettu koe riittävällä määrällä toistoja. Näistä klassinen esimerkki on antaa satunnaisesti toisille koehenkilöille oikeaa lääkettä ja toisille koehenkilöille lumelääkettä. Vaikutuksia vertailemalla voidaan saada selville, onko lääkkeessä oikeasti tehoa. Modernimpi esimerkki on verkkokaupan käyttöliittymän A/B-testaus, jossa satunnaisesti toisille asiakkaille nettisivulle näytetään punainen nappi ja toisille sininen nappi ja vertaillaan vaikuttaako napin väri sen klikkausten määrään.

Mikäli satunnaistetut kokeet eivät ole mahdollisia, voidaan yrittää metsästää luonnollisia kokeita. Esimerkiksi voidaan ottaa seurantaan henkilöt, jotka ovat juuri ja juuri päässeet läpi lääkiksen pääsykokeista ja vertailla tätä joukkoa niihin jotka jäivät niukasti ulos lääkiksestä. Voidaan olettaa että pienet erot pääsykokeen pistemäärissä jouhtuvat suurelta osin satunnaistekijöistä ja näin ollen on luotettavaa tehdä päätelmiä lääkiksen kausaalivaikutuksista loppuelämän onnellisuuteen.

Viimeisimpien vuosikymmenien aikana on erityisesti Judea Pearlin johdolla kehitetty kausaalimalleja, jotka auttavat tekemään kausaalipäätelmiä myös silloin kun käytössä havaittua dataa, mutta ei voida tehdä satunnaistettuja kokeita. Niissä aluksi pitää pystyä aiempiin tutkimuksiin perustuen rakentamaan graafi, josta näkee mitkä muuttujat vaikuttavat mielenkiinnon kohteina oleviin muuttujiin. Mikäli tärkeimmät näistä taustamuuttujista on mitattu, kausaalipäätelmät voivat olla mahdollisia.

Meidän kolmen muutttujan tapauksessa ilmiötä kuvaava graafi on esitelty kirjoituksen alussa. Tässä hyvin yksinkertaisessa maailmassa pystymme tutkimaan hukkumisten kausaalityhteyttä myyntiin. Kun laitamme sekä lämpötilan, että hukkumiset samaan regressiomalliin selittämään myyntiä, hukkumisella ei ole mitään selitysvoimaa, koska lämpötila on kaiken juurisyy. Näin ollen data näyttää, että ihmisiä on aivan turha alkaa hukuttamaan myynnin edistämiseksi.

Monimutkaisempien ilmiöiden tutkiminen kausaalimalleihin tukeutuen on itselläni vielä vaiheessa, joten ei kannata puhua tässä siitä sen enempää. Silti osa omaa analyysiprosessia on hahmotella graafiksi erilaisia potentiaalisia taustalla lymyileviä syy-seuraus-yhteyksiä, joita voi sitten asiaan paremmin vihkiytyneet haastaa. Mikäli mielenkiinto kausaalimalleihin heräsi, kannattaa aloittaa Judea Pearlin tietokirjasta ”The book of why”, josta Kimmo Pietiläinen on tehnyt myös suomenkielisen käännöksen: ”Miksi – syyn ja seurauksen uusi tiede”.

Ohjaileva analytiikka

Ohjaileva analytiikka on tässä lajittelussa laitettu viimeiseksi, koska pohjalla pitää olla alemman tason analytiikkaa päätöksenteon tueksi. Täältä huipulta kannattaa kuitenkin aina aloittaa pohtimalla, mitä halutaan tehdä. Mihin liittyviä päätöksiä analytiikalla halutaan parantaa? Esimerkkejä:

  • Halutaan kehittää jäätelönmyynnin logistiikkaa: miten paljon mitäkin makua pitäisi toimittaa kioskille, että asiakkaat saavat mitä haluavat, mutta jäätelöä ei tarvitsisi kohtuuttomia määriä pakastimessa varastoida. – > Ratkaisu: Päätöksenteon tueksi tarvitsemme ennakoivaa analytiikkaa, jolla arvioidaan kuinka paljon mitäkin makua menee ensi viikolla.
  • Halutaan lisätä jäätelön kysyntää. -> Ratkaisu: Diagnosoiva analytiikka. Johtopäätös on se, että korkeammat lämpötilat johtaisivat korkeampaan myyntiin. Mutta koska kaikki säiden hallitsemiseen kykenevät tahot ovat niin kallispalkkaisia, ei tällaista hanketta kannata toteuttaa. Laitetaan resurssit muun toiminnan kehittämiseen.

Kun pohjalla on riittävästi oppia analytiikan alemmilta tasoilta, ohjaileva analytiikka on pääasiassa erilaisia optimointialgoritmeja. Lisäksi on olemassa itseoppivia päätöksentekoalgoritmeja, jotka päivittävät omaa ymmärrystä aina päätöksestä tulleen palautteen perusteella.

Päätöksenteon optimointi on liian laaja aihe alkaa tässä syvemmin käsiteltäväksi, mutta se vaanii kaiken liiketoiminta-analytiikan taustalla. Ennen hosumista liian pitkälle datan kanssa, olisi hyvä ymmärtää mitä päätöksiä halutaan parantaa. Se mahdollistaa, että analytiikan alimmalta portaalta ponnistaessa edetään oikeaan suuntaan. Toisinaan matkalla opitaan jotain uutta, jonka vuoksi kurssia joudutaan kääntämään. Tämä tekee seikkailusta kuin seikkailusta entistä jännempää.

Lopputurinat

Dataan pohjautuvalla analytiikalla on useita eri tasoja ja niiden sisällä eri etenemispolkuja. Jotta varmistetaan datan penkomisen hyödyllisyys, aluksi pitäisi kirkastaa, mitkä päätöksentekoprosessit yrityksessä kaipaavat hiomista. Sitten valitaan sellainen polku, jota olemassa olevan datan pohjalta on mahdollista edetä. Lopulta päätöksenteko on kaksivaiheista: ensin opitaan, sitten päätetään.

Facebooktwitterredditpinterestlinkedinmail

Hyvinvoinnin lähde ja sen verotus

Kun yhteiskunnallinen keskustelu velloo pääasiassa pienten yksityiskohtien (a’la eläkeläisten kalastusluvat ja helatorstain pyhyys) ympärillä ja media tykittelee epämääräistä talouspoliittista jargonia on hyvä välillä muistella perusasioita. Mistä meidän hyvinvointiyhteiskunnan hyvinvointi kumpuaa? Moraalifilosofi Adam Smith on näistä asioista saarnannut jo 1700-luvulla, mutta ne meinaavat hämärtyä yksityiskohtia koskevan hälyn taakse.

Ensiksi on hyvä palautella mieleen aiemman kirjoitukseni sanoma. Perusvaluuttamme ei ole rahaa vaan laatuaikaa. Määrittelen nyt hyvinvoinnin niin, että se on aika, jonka elämässä pystyy käyttämään mielihyvää tuoviin asioihin. Loput on käytettävä työntekoon hyvinvoinnin hankkimiseen. Optimitilanteessa työkin on sellaista, joka tuottaa itselleen nautintoa, mutta oletetaan yksinkertaisuuden vuoksi että työ on neutraali tapa viettää aikaa. Raha on väline, jolla voi siirtää hyvinvointia

  • ihmiseltä toiselle
  • ajassa toiseen ajanhetkeen (tulevaisuudesta nykyhetkeen ottamalla velkaa tai kohtuullisen ajanjakson verran tulevaisuuteen rahaa säästämällä).

Kaupankäynti

Hyvinvoinnin perusta markkinataloudessa on kaupankäynti, mikä ei vapaassa yhteiskunnassa suinkaan ole nollasummapeliä, jossa vain toinen osapuoli hyötyy. Toki kaikille tulee silloin tällöin huonoja kauppoja. Itselleni tulee heti mieleen Dieselin farkut, jotka olivat kalleimmat koskaan ostamani housut, mutta käyttöiältään lyhytikäisimmät. Reilusti alle vuodessa repeilivät vähän joka saumasta. Mutta keskimäärin vapaaehtoiset vaihtokaupat ovat kaikille hyödyllisiä.

Kakkukaupoilla

Otetaan esimerkiksi tilanne, jossa Jarmo on ostamassa juhliinsa kakkua. Toiveiden mukaisen kakun valmistuskustannukset olevat konditorialle 20€. Jarmo arvelee, että vastaavan kakun tekemiseen menisi hänellä aikaa 3 tuntia. Hintoja olisi kiva vertailla oikeassa ”hyvinvointi”-valuutassa, mutta yleensä on helpompaa tehdä vertailu rahamittarilla.

Kun Jarmo tekee oman alansa töitä, hänelle jää verojen jälkeen käteen 10€/tunti. Voidaan siis sanoa, että Jarmon valmistuskustannukset ovat 3*10€ lisättynä raaka-ainekustannuksilla 5€ eli yhteensä 35€.  Näin ollen kunhan Kakun hinta on välillä 20€-35€ niin molemmat hyötyvät kaupasta.

Tällainen hyvinvoinnin lähde on tietenkin verotuksen kohteena, joten hinnoissa pitää huomioida arvonlisävero, mikä Suomessa on 24%. Kun ALV huomioidaan, niin kaupankäynnin kannattavuusväli supistuu: 24.8€-35€. Konditoria hinnoittelee kakun 20% katteella tuotantokustannuksiin nähden, joten hinnaksi muodostuu ALV: ineen 29.8€.

Konditorian omistaja tekee voittoa nyt yritysverolla vähennetyn katteen eli 3.2€ verran ja Jarmon hyöty on 5.2€. Suurin hyötyjä oli kuitenkin valtio 5.8€ ALV:llä ja 0.8€ yritysverolla eli yhteensä 6.6€ ja lisää tulee myöhemmin leipurin (+ muiden työtekijöiden) palkan verotuksesta sekä yrittäjän pääomaveron muodossa.

kakun_hintaEli win-win-win ratkaisu. Tämän voiton mahdollistaa se, että konditoria pystyy niin paljon Jarmoa tehokkaamin toimimaan, että erotuksesta jää hyvinvointia jaettavaksi joka suuntaan.

Mietitäänpä sitten Kaarinaa, jolla on Jarmoa huonommin palkatussa työssä ja hänelle jää käteen verojen jälkeen 9€ tunnilta. Mutta toisaalta hän on sen verran kätevä että pyöräyttää kakun 2 tunnissa. Kaarinan maksimihinta kakulle olisi siis 2*9€+5€ = 23€. Tämä on vähemmän kuin 24.8€, joten jo ALV pitää huolta, ettei kauppa toteudu vaan Kaarinan kannattaa ottaa vapaata töistä ja leipoa kakku itse. Tässä tilanteessa maailmaan saatiin synnytettyä Kaarinan työllä kakku, mutta mitään muita hyötyjä ei yhteiskuntaan syntynyt.

Verojen vaikutus

Arvonlisävero ei ole ainoa vero, joka kutistaa kapankäynnin kannattavuusväliä. Työn verotus kutistaa väliä molemmista reunoista: Mitä vähemmän Jarmolle tai Kaarinalle jää käteen palkastaan, sitä vähemmän heidän kannattaa kakustakaan maksaa.  Toisaalta mitä vähemmän leipurille jää käteen palkastaan, sitä tomerammin hän vaatii yrittäjältä palkankorotusta, mikä taas näkyisi korkeampana kakun valmistuskuluna. Yritysveron kasvatus taas lisää painetta nostaa voittomarginaalia, jotta yrittäjällekin jäisi riittävä palkkio putiikin pyörittämisen riskien kantamisesta. Pääomaveron noston vaikutukset ovat hieman monimuotoisemmat (osin samat kuin yritysveron), mutta tulevat jarruttavana tekijänä vastaan viimeistään siinä vaiheessa kun yrittäjä haluasi palkata uuden työntekijän tai uusia kalustoa ja tarvitsee sitä varten pääomaa ulkopuoliselta sijoittajalta (kts. jälkikirjoitus tähän liittyen).

Omavaraiset ratkaisut

Kuluttajat eivät tietenkään tee jokaista ostopäätöstä taskulaskimen kanssa vaan luottavat enemmän tai vähemmän tarkkoihin mutu-arvioihin. Isossa mittakaavassa kuitenkin kaikki kaupankäyntiin kohdistuvat verot motivoivat kuluttajia pikkuhiljaa kohti omavaraisia ratkaisuja. Tästä taas häviävät kaikki:

  • kuluttaja, joka käyttää paljon aikaa työhön, minkä ammattilainen tekisi nopeammin ja paremmin
  • ammattilainen, joka jää ilman työtuloa. Useasti toistuessa työttömyys/konkurssi -riskit kasvavat.
  • valtio, jolle ei jää verokertymää ollenkaan

Kakkuesimerkissä omatoimiseen leipomiseen kannustettiin kustannuksilla lähinnä vain pienituloisia, mutta tässä on varmasti suurta vaihtelua eri palveluiden välillä. Yksi merkki siitä, että Suomessa työtä ja kaupankäyntiä on verottettu reippaasti, on monet omatoimisuutta tukevat palvelut, jotka ovat nousseet korvaamaan perinteistä asiakaspalvelua. Ainakin bloggari Liisa Väisäsellä on Suomessa ikävä Etelä-Eurooppalaista palvelukulttuuria, mutta ilmeisesti iso osa suomalaisista ei ole valmiita maksamaan palvelusta kustannustasoa vastaavaa hintaa. Tai sitten suomalaiset vaan arvostavat monipuolista omatoimisuutta.

Yhteiskunnan optimointi

Verotus ei tietenkään yksiselitteisesti ole paha asia. Hyvinvointiyhteiskunnan rakenteiden ylläpidon järjestämiseen tarvitaan rahallista verotusta. Itsekin maksan mielelläni oman osuuteni pätevien poliisien, opettajien, sairaanhoitajien ja poliitikkojen palkasta. Toisaalta kilpailua vääristävien yritystukien (useita tutkimuksia viime vuosilta, esim. VATT) tai törsäilevien virastojen (esim. Vahteran selvittelyt) rahoittaminen eivät ole kuitenkaan niitä juttuja, mitkä motivoivat tekemään pitkiä työpäiviä.

Tasapainottelu hyvinvointivaltiolle tarpeellisia kuluja rajaten ja mahdollisimman vähän hyvinvointitappiota aiheuttavan verotuksen välillä on todella monimutkainen optimointitehtävä, mutta perusasioiden ymmärtäminen helpottaa sitä paljon. Onneksi meidän kaikkien ei tarvitse osata sitä tehdä vaan riittää, että äänestetään valtaan päteviä poliitikkoja ja sen jälkeen voidaan itse keskittyä pari vuotta siihen hommaan mikä parhaiten osataan ja toivon mukaan myös tykätään.

PS. Mietiskelin tekoja, joita kuka tahansa kohtuullista hyvinvointia nauttiva voisi tehdä Suomen nousun tukemisessa. Eräs mieleen tullut konkreettinen teko on lainata rahaa kasvua hakevalle PK-yritykselle. Jokin aika sitten on tullut joukkorahoituspalvelu, jonka kautta yksityishenkilöt voivat lähteä pienilläkin summilla mukaan. Enää yritysten kasvurahoitus ei ole pelkästään pankkiirien ja miljonäärien mielenoikuista kiinni. Suuria korkoja ei saa ilman riskejä, joten rahoituspuuhiin ei pidä lähteä suuremmilla summilla kun on valmis hävimään. Niin ja 30% korkotuotosta menee tietysti pääomaverotukseen.

 Facebooktwitterredditpinterestlinkedinmail