Rss

  • linkedin

Archives for : tammikuu2015

Kimblen noppa ei ole täysin satunnainen

Dices sign icon. Casino game symbolSyksyllä jyväskyläläisessä nuorisokodissa pelatuissa Kimble-peleissä tuli huomiota herättävän usein nopan heitolla, tai Kimblen tapauksessa kuvun sisällä olevan nopan poksautuksella, kuutosen jälkeen ykkönen. Tämän toistuessa peliseurueessa alettiin sadatella jatkuvaa heitto-onnen kääntymistä aallonharjalta pohjamutiin. Eräs nuorisokodin ohjaajista yritti puhua kanssapelaajilleen järkeä: noppa on aina satunnainen ja kuutosta seuraaviin ykkösiin oli vain alettu kiinnittää liiaksi huomiota. Koko ilmiön täytyi olla vain seurueen puheilla itselleen rakentama psykologinen harha.

Asian selvitys tutkimuksella

Orastava debatti kantautui tilastotieteilijä Tuomas Kukon korviin.  Ammattilaisen korvaan tutkimusongelma kuulosti äkkiseltään naiivilta: onhan arpakuution klassiset todennäköisyydet laskettu läpi jo pimeällä keskiajalla. Toisaalta Kimblen noppakupu on sen verran pieni, että voi olla pieni mahdollisuus sille, ettei satunnaisuus pääse sen sisällä täysin toteutumaan (nopan satunnaisuuden toteutumista käsiteltiin tässä postauksessa). Niinpä tutkimusryhmä pystytettiin, ja joululoman 2014 pimeinä iltoina, osin lapsityövoimaa hyödyntäen, tahkottiin kolme tiukkaa Kimble-matsia ja kirjattiin ylös kaikki 508 nopanheittoa.

Tutkimusongelma asetettiin analyysin tehostamiseksi siten, että kaikki vastakkaiselle puolelle tapahtuneet siirtymät (1 <–> 6, 2<–>5 ja 3<–>4) oletettiin yhtä todennäköisiksi. Kuvun sisällä olevan nopan symmetrisyyttä siis ei kyseenalaistettu vaan mahdollisten epäsatunnaisuuksien oletettiin tulevan kuvun takia lähtötilanteesta riippuen.  Lähtökohtaisesti paikkansa pitävä vanha totuus, eli nollahypoteesi, oli seuraava: ”Nopan vastapäinen luku tulee yhtä todennäköisesti kuin mikä tahansa muukin luku (n. 16.7%)”.

 Mullistava tulos

Jo otteluiden aikana alkoi lukuisia aineistoja pyöritelleen kirjurin silmään vaikuttaa siltä, että kyseessä saattaa sittenkin olla todellinen ilmiö, mutta vasta aineiston analyysivaihe toi julki varsinaisen jytkyn. Nopan vastapuoli heitettiin peräti 23.9% todennäköisyydellä, eli lähes puolitoista kertaa todennäköisemmin kuin ennakolta oletettiin. Osuuksien testin perusteella laskettiin tuloksen tilastollinen merkitsevyys. P-arvo tippui prosentin sadasosiin, kun yleisesti nollahypoteesin kumotuksi toteamiseen riittävät viittä prosenttia pienemmät arvot.

Koeasetelma (otteluiden heittojen lukumäärä) oli räätälöity paljastamaan nopan vastapuolen saamisen todennäköisyyden poikkeamia odotetusta siten, että noin kolmen prosenttiyksikön heilahdus 16.7% :sta oli löydettävissä. Tässä tutkimusryhmän suureksi yllätykseksi onnistuttiin, sillä ponnautusmekanismi Kimble-kuvun sisällä on mitä ilmeisimmin roimasti oikeaa nopanheittoa vähemmän satunnainen.

 Hyödyt pelaajille

Onko tästä löydöstä mitään konkreettista hyötyä Kimblen pelaajalle? Varmasti tulee vastaan tilanteita, joissa tätä tutkimustietoa voi hyödyntää. Mietitään esimerkiksi seuraavaa tilannetta:

Idea for gameHeität noppaluvun 5 ja sinulla on kaksi mahdollista siirtoa:

  1. Siirto, jossa nappisi siirtyy KOLME askelta seuraavana heittävän napin eteen
  2. Siirto, jossa nappisi siirtyy KAKSI askelta seuraavana heittävän napin eteen

Et tietenkään halua tulla syödyksi ja tiedät, että seuraavaksi nopasta tulee todennäköisimmin luku 2. Ensimmäinen valinta on tutkimuksen tiedon ansiosta nyt parempi ratkaisu. Lisäksi joskus, lähinnä aikuisten peli-illoissa, käytetään myös sääntövariaatiota, jossa mitään nappuloista ei ole pakko liikuttaa. Tällöin tämän tutkimuksen tarjoamien valistuneiden valintojen avulla voidaan kohottaa huomattavasti omaa voittotodennäköisyyttä.

 Sivutulos

Kerätty aineisto antoi varsinaisen tuloksen lisäksi mielenkiintoisen johtolangan. Siinä missä nopan vastapuoli ponnahti esiin n. 24-prosenttisesti, niin sama luku heti perään ilmaantui vain 10.8% todennäköisyydellä. Neljälle muulle nopan kantille jäi yhteensä 65.3% (eli keskimäärin 16.3%)  todennäköisyys. Käytännössä vastakkaisen luvun lisääntyminen selittyi pelkästään saman luvun toistumisen vähentymisenä ja kuution vierekkäiset sivut noudattelivat suurin piirtein ”rehellisiä” todennäköisyyksiä. Tätä ilmiötä ei alkuperäisen tutkimushypoteesin valossa tarkkailtu, joten olisi syytä kerätä vielä uusi aineisto, jotta minimoidaan yksittäisen aineiston satunnaisoikun mahdollisuus. Näin ei langeta aiemmin käsiteltyyn vanhaan miinaan.

Jatkotutkimukset

Tutkimukseen toteuttamiseen liittyy vielä pari kyseenalaistavaa kysymystä:

  • Kaikki heitot tehtiin samalla Kimble-laudalla. Voiko tulokset selittyä viallisella laudalla?
  • Nopan ”poksautuksia” suoritti kolme eri henkilöä. Voiko heillä joku systematiikka poksautus-tyylissä, mikä selittää tutkimuksen tulokset?

Näiden epäilyjen kumoamiseksi ja sivutuloksen oikeellisuuden varmistamiseksi haastan blogin lukijat keräämään talteen heittosarjan seuraavasta Kimble-pelistä. Kirjatkaa sarjat sitten tämän postauksen kommentti-osioon. Kunhan dataa on riittävästi kertynyt, suoritetaan eeppinen jatkotutkimus.

Kimblestä järjestettiin SM-kisat viimeksi vuonna 2012. Blogin lukijoiden onkin nyt hyvä aika aloittaa harjoittelu seuraavia kisoja varten. Ja kirjata luonnollisesti samalla heittosarjat ylös jatkotutkimuksiin.

Statistickon steesit:

  1. Kimblessä kannattaa minimoida ne riskit mitkä toteutuvat pelivuorossa seuraavan vastustajan heittäessä nopasta vastakkaisen luvun
  2. Lautapelin ollessa kilpaurheilun sijaan perheen leppoisaa ajanvietettä, sitä ei kannata pilata liian syvällisellä taktikoinnilla [ terveiset tähän väliin siskolle :) ]

Teksti on kirjoitettu yhdessä analyyseista vastanneen kollega Tuomas Kukon kanssa.

 

 

 

Facebooktwitterredditpinterestlinkedinmail