Rss

  • linkedin

Archives for :

Totuuden jäljillä

Otetaan heti alkuun pieni pähkinä, joka on hieman muokaten kopioitu Nassim Talebin kirjasta ”Fooled by randomness”.

Kuvitellaan tauti, jota sairastaa yksi tuhannesta suomalaisesta 40 vuotiaasta miehestä. Jarkko menee 40-vuotispäivän kunniaksi lääkärille rutiininomaiseen terveystarkastukseen ja lääkäri suorittaa verikokeen taudin testaamiseksi. Kokeesta tiedetään, että oikeasti sairaiden lisäksi se antaa positiivisen tuloksen 5% todennäköisyydellä silloin kun potilas on terve.

Jarkko sai kokeesta positiivisen tuloksen. Mikä on todennäköisyys, että Jarkolla on kyseinen tauti?

Mieti hetki vastausta, ennen kuin jatkat eteenpäin.

sairaus_graafi2Vastasitko 95%? Ei se mitään, niin vastaa moni muukin pätevä kaveri. Mutta oikea vastaus on n. 2%. Pieleen menee yleensä siinä, että ennakkotieto ”yleinen sairastuneisuus 1/1000” jää huomiotta. Asian hahmottamiseksi vieressä on laatikko, jossa pallerot kuvaavat tyypillistä 1000 hengen otosta 40-vuotiaista miehistä. Punaisella värjätty alanurkan pallero on se epäonninen, joka sairastaa tautia. Jäljelle jäävistä 999 terveestä henkilöstä 0.05 * 999, eli noin 50 henkeä taas ovat sellaisia, jotka saavat verikokeesta virheellisen positiivisen tuloksen. Näitä ovat mustat pallerot ylhäällä. Pähkinän oikea vastaus tulee jakolaskusta 1/(1 + 50).

Edellinen verikoe on esimerkki tilanteesta, jossa totuuden etsimiseksi on kehitetty testi, jonka lopputulokseen liittyy epävarmuutta. Myös tieteen tekeminen on jatkuvaa painimista löydöksiin liittyvien epävarmuuksien kanssa. Esittelen seuraavaksi kolme mittaria, jotka auttavat tieteellisen löydöksen totuusarvon mittaamisessa.

Tilastollinen merkitsevyys (P-arvo)

P-arvo on tärkein ja tunnetuin mittari sille, kuinka uskottava tutkimustuloksemme on. Kyseessä on ehdollinen todennäköisyys: Todennäköisyys, että löydös ilmenee aineistossa sattumalta JOS se ei oikeasti pidä paikkaansa.  Akateemisessa tutkimuksessa löydöstä yleensä pidetään tilastollisesti merkitsevänä, jos P-arvo on pienempi kuin 0.05. P-arvoa kuitenkin ylitulkitaan jatkuvasti samoin kuin ”Jarkon sairausdiagnoosi” -esimerkissä. P-arvo 0.05 EI nimittäin tarkoita välttämättä, että tutkimuslöydös olisi 95% todennäköisyydellä tosi.

Tilastollinen voimakkuus (Power)

Voimakkuus on ”Todennäköisyys, että tutkimusaineisto paljastaa etsimämme ilmiön JOS ilmiö on oikeasti olemassa.” Mediahuomiotakin saaneen Kimble-tutkimuksen tapauksessa: ”Todennäköisyys, että vastakkaisia silmälukuja tulee tilastollisesti merkitsevästi enemmän tutkimuksessamme, jos nopassa on oikeasti systematiikkaa.” Voimakkuuslaskelmia käytetään pääasiassa ennen tutkimusta selvittämään sopivaa otoskokoa tutkimukselle, mutta se on hyödyllinen tieto myös myöhemmin löydöksen totuusarvoa laskiessa.

Ennakkokäsitys ilmiöstä (Prioritieto)

P-arvo ja Power ovat siis ilmiön paljastumistodennäköisyyksiä tietyillä ehdoilla ja me haluaisime päästä käsiksi ilmiön olemassaolon todennäköisyyteen. Tämä onnistuu ottamalla huomioon ennakkokäsitys ilmiöstä ennen tutkimusaineiston keräämistä.

Esimerkiksi Kimble-tutkimuksessa ennakkokäsityksemme oli suurinpiirtein seuraavanlainen: ”Nuorisokodin peleissä ykkönen on tullut kuutosen jälkeeen silmiinpistävän usein. Kyse voi kuitenkin olla sattumasta ja siitä seuraavasta psykologisesta harhasta. Toisaalta systematiikat ovat mahdollisia, koska noppakupu on sen verran pieni. Noppa voisi olla kyseisellä tavalla epäsatunnainen ehkä 20% todenäköisyydellä, eli kerran viidestä.”

Tässä kohti huomataan, että peliä vuosikymmeniä hakanneella konkarilla ennakkokäsitys olla täysin erilainen. Joku aktiivipelaaja olisi saattanut nähdä asian seuraavasti: ”Vuosikymmenten kokemuksella olen hyvin varma ilmiön olemassaolosta.  Väittäisin olevan sen tosi 90% todennäköisyydellä.” Ennakkokäsitys on usein hyvin subjektiivinen näkemys.

ProfessorSubjektiivisten näkemyksien suhteen ollaan ymmärrettävistä syistä varovaisia akateemisen tutkimuksen tilastoanalyysissä. Emme halua, että tieteen tulokset ovat liian riippuvaisia yksittäisen tutkijan subjektiivisesta näkemyksestä. Ainahan on olemassa riski, että ideologiset näkemykset tai henkilökohtaiset haaveet ohjaavat yksittäisen henkilön ennakkokäsitystä tiettyyn suuntaan.

Sen sijaan esim. yrityksen tehdessä tutkimusta vain oman liiketoimintansa päätöksenteon tueksi prioritietoa kannattaa hyödyntää, mikäli palkkalistoilta löytyy asiantuntija, joka osaa muuttaa näkemyksensä numeeriseen muotoon. Liiketoiminnassa taloudelliset intressit kannustavat kohti objektiivisuutta. Virheelliset johtopäätökset kun tuppaavat näkymään yrityksen tuloksessa.

Prioritodennäköisyyden ongelma on sen vaikea määrittäminen yksiselitteisen objektiivisesti. John Ioannidis käyttää artikkelissaan erästä objektiivista lähestymistapaa: selvitetään kaikki viimeaikojen oman tutkimusalan tutkimukset ja käytetään prioritodennäköisyytenä suhdetta, jolla aloitetut tutkimukset ovat lopulta johtaneet oikeaan uuteen löydökseen. Tämän asian selvittäminen ei kuitenkaan käy ihan sormia napsauttamalla.

Tutkimuslöydösten totuusarvot

Nyt meillä alkaa olla riittävästi työkaluja käydä käsiksi tutkittavan ilmiön olemassaolon todennäköisyyteen. Mietitään tyypillistä standardien mukaan suunniteltua tutkimusta. Mikäli matematiikka ei ole lähellä sydäntäsi voit jättää kaavat ja kreikkalaiset kirjaimet omaan arvoonsa. Tutkimuksen tilastollinen voimakkuus  (1-\beta ) on standardi 0.8 ja tilastollinen merkitsevyyskriteeri  (\alpha ) on 0.05. Olkoon testattava hypoteesi  (H_1 ) aiemman Kimble-esimerkin tapainen, mikä voidaan olettaa ennakkokäsityksen mukaan todeksi 20% varmuudella. Nyt jos data kriteereillämme paljastaa ilmiön, sen todennäköisyys olemassaololle on 80%. Tämä saadaan laskettua Bayesin säännöstä johdetulla kaavalla (johdin sen tähän hätään itse, joten suhtautuminen varauksella):

  \mathbb{P}(H_1 | Data) = \frac{(1-\beta ) \mathbb{P}(H_1)}{ \alpha (1-\mathbb{P}(H_1))+(1-\beta ) \mathbb{P}(H_1)}

 

Mietitään sitten vertailun vuoksi tutkimusta, jossa voimakkuus ja merkitsevyyskriteeri ovat edelleen samoja, mutta tarkoitus on testailla vähän kaikkea, jos satuttaisiin löytämään joitain tilastollisesti merkitseviä yhteyksiä. Meillä voisi olla vaikka pitkä lista erilaisista Kimble-pelaajien ominaisuuksista kätisyydestä hapenottokykyyn ja tutkimme, sattuisiko jollain niistä olemaan yhteyttä pelissä pärjäämiseen. Tällöin yksittäiseen testiin liittyvä prioritodennäköisyys ilmiön olemassaololle voisi olla luokkaa 1%. Nyt ylläolevalla kaavalla laskettu totuusarvo kyseiselle löydökselle romahtaa niinkin alas kuin 14%:iin.

Pieni prioritodennäköisyys romauttaa löydöksen totuusarvon, koska sattumalta tulevat löydökset dominoivat tilastollisesta merkitsevyydestä huolimatta. Näin kävi alun sairausdiagnoosipähkinässäkin. Lisäpähkinä pohdittavaksi: Matias saa saman diagnoosin kuin Jarkko, mutta hän tietää jo ennalta omaavansa geenit, jotka nostavat kyseisen sairauden puhkeamisen riskiä.

Käytännön prosessit

SearchingEnnakkonäkemyksen kunnollinen hyödyntäminen on todellisuudessa vaikeaa, mutta tärkeintä tässä on huomata ero huolellisesti valitun hypoteesin tutkimisen ja ”vähän kaiken kokeilun”, (exploratiivisen tutkimuksen) välillä. Tässä vaiheessa moni voi huomata, että omiin tutkimuksiin/tietolähteisiin liittyy enemmän epävarmuutta, mitä on tullut ajatelleeksi. Niin kävi itsellenikin tätä kirjoittaessa. Tutkimuksen huolellisella suunnittelulla voi kuitenkin luottaa olevansa useammin oikeassa kuin väärässä, vaikkei tarkkoja prioritodennäköisyyksiä pystyisikään hahmottamaan.

Tutkimustiedon jatkokäsittelijän taas tulee muistaa olla kriittinen uuden mullistavan tiedon löytyessä. Oleellinen kysymys kuuluu: Kuinka tähän tulokseen päädyttiin? Onko kyseessä hakuammunnan tulos vai oliko alla jo muuta samaa ilmiötä tukevaa tutkimustietoa, jolle nyt haettiin varmistus?

 

Statistickon steesit:

  1. Tutkimuslöydöksen todenperäisyyden arviointiin tarvitaan tilastollisten mittareiden lisäksi prioritiedon hyödyntämistä
  2. Prioritiedon muuttaminen numeroiksi on usein hankalaa, mutta huolellisella tutkimussuunnittelulla voidaan kiertää tätä ongelmaa
  3. Kokeileva, exploratiivinen, tutkimus on tärkeää uusien tutkimussuuntien löytämiseen, mutta siitä on vielä pitkä matka totuudeksi julistamiseen
Facebooktwitterredditpinterestlinkedinmail

Hyvät ja huonot myyjät

Pohditaan hetki, minkälaisia mielikuvia aiheuttaa ammatti ’myyjä’. Ärsyttävä tyrkyttäjä? Lipevä huijari?  Tällaisia mielikuvia itselleni tuli ensimmäisenä mieleen ainakin joitain vuosia sitten. Syynä oli lähinnä muutamat mieleen jääneet negatiiviset kokemukset:

  • Lehtimyyjät, jotka eivät millään usko etten enää lue Aku Ankkaa, vaikka 25 vuotta sitten luinkin (mitään ei ole itse Akua vastaan, mutta aika ei vaan kertakaikkiaan riitä)
  • Teleoperaattorimyyjät, jotka yrittävät väkisin myydä nettiyhteyden kylkeen läjän TV-kanavia vaikka nykyisinkin näkyvistä ohjelmista jää 99.9% katsomatta.
  • Yritykset joiden samat päivittäiset mainosviestit tukkivat sähköpostilaatikon

MyyntimiesNämä ovat esimerkkejä huonoista myyjistä. Negatiivisia kokemuksia jälkeensä jättävät myyjät ovat sellaisia, joiden  ensisijainen tarkoitus on kuluttajien psykologisia heikkouksia (esim. Kahnemanin klassikossa, jota esittelin täällä kerrotaan, kuinka ihminen päätyy itselleen epäedullisiin päätöksiin) ja muita kikkoja hyödyntämällä maksimoida oma lyhyen tähtäimen etunsa. Onneksi tämä ei ole kuitenkaan koko totuus myyjä-kunnan edustajista, vaikka mieleen helposti jäävätkin.

Hyvät myyjät

Yrittämisen kautta näkemys myyntityötä kohtaan on hieman avartunut. Karu totuus kuuluu: ”Vaikka kuinka hyvin sinä tai tuotteesi pystyy ratkomaan toisten ihmisten ongelmia ja helpottamaan elämää, ei siitä ole mitään iloa elleivät nämä potentiaaliset asiakkaat sitä tiedä tai ymmärrä”.

What we each needHyvät myyjät kartoittavat ihmisten ongelmia ja etsivät parhaita mahdollisia ratkaisuja niiden selvittämiseen. Myyjät ovat äärimmäisen tärkeitä palasia yhteiskuntaa varsinkin kun itse asiantuntijat eivät aina ole ulosanniltaan sitä selkeimpää porukkaa. Itse ainakin kuulun siihen asiantuntijaporukkaan, joka selkeästä ulosannista puhuttaessa tuntee piston sydämessään, vaikkakin ihmisten todellisten tarpeiden kartoittaminen on tutkimusongelmana erittäin mielenkiintoinen.

Hyvät myyjät saavat aikaiseksi paljon diilejä, jotka hyödyttävät oikeasti molempia osapuolia. Pitkällä tähtäimellä tämä on aina palvelun tarjoajallekin tuottavinta, koska tyytyväinen asiakas palaa takaisin ja suosittelee kavereilleen. Parhaat myyjät heittävät välittäjän roolissaan täysillä itsensä peliin ja ovat palkkansa ansainneet.

Dataperusteinen myynti

Nykyaikana voi tehdä hyvää myyntiä myös ilman täyttämättömien tarpeiden metsästämiseen omistautuneita myyntireiskoja. Hyvänä esimerkkinä esimerkiksi Amazonin nettikirjakauppa. Itselleni on ainakin hyvin osuneet heidän suositukset kirjoista, joiden olemassaolosta en ole aiemmin kuullutkaan. Käsittäkseni he ennustavat mieltymyksiäni sen perusteella mitä…

  1. olen aiemmin tilannut
  2. olen heidän sivuillaan selaillut
  3. muut henkilöt, jotka ovat tilanneet/selailleet kanssani samoja kirjoja ovat lisäksi tilanneet.

Lisäksi he lähettävät suositteluviestejään sen verran harvoin, ettei ärsyyntymiskynnys ylity. Oikeastaan päinvastoin: avaan heiltä tulleen viestin innolla odottaen, mitä mielenkiintoista voisin seuraavaksi lukea.

Toinen vastaava on leffa-palvelu Netflixin miljoonan taalan arvoinen suosittelualgoritmi. Yhdistämällä tiedot katsomistani leffoista ja niille antamista arvosanoista muiden käyttäjien vastaaviien tietoihin, he ennustavat mistä vielä katsomattomastani leffasta todennäköisesti tykkäisin. Sen sijaan, että he väkisin ”pakottaisivat” uusimaan tilaukseni, he voivat kertoa mitä itselleni mielenkiintoista on heillä varastossaan vielä tarjolla.

Sekä Amazonin että Netflixin suosittelut perustuvat älykkääseen data-analyysiin. Nyt datan keräämisen ja analysoimisen aikakaudella paljon pelotellaan mitä kaikkea yritykset tietävätkään meistä. Tietomurtoihin ym. riskeihin pitää toki suhtautua vakavasti, mutta asioiden positiivinen puoli kuitenkin helposti unohtuu. Riskihän on myös suuri, että yritykset oppivat palvelemaan ja täyttämään toiveemme huomattavasti nykyistä paremmin ja tehokkaammin!

Statistickon steesit:

  1. Huono myyjä tyrkyttää samaa tuotetta sokkona kaikille ajatelleen vain omaa provisiota lyhyellä tähtäimellä
  2. Hyvä myyjä kartoittaa asiakkaiden tarpeet ja laittaa itsensä peliin näiden tarpeiden täyttämiseen
  3. Data-analyysi tarjoaa työkaluja, joilla hyvä myyntityö voidaan nostaa korkeammalle tasolle
Facebooktwitterredditpinterestlinkedinmail

Kimblen noppa ei ole täysin satunnainen

Dices sign icon. Casino game symbolSyksyllä jyväskyläläisessä nuorisokodissa pelatuissa Kimble-peleissä tuli huomiota herättävän usein nopan heitolla, tai Kimblen tapauksessa kuvun sisällä olevan nopan poksautuksella, kuutosen jälkeen ykkönen. Tämän toistuessa peliseurueessa alettiin sadatella jatkuvaa heitto-onnen kääntymistä aallonharjalta pohjamutiin. Eräs nuorisokodin ohjaajista yritti puhua kanssapelaajilleen järkeä: noppa on aina satunnainen ja kuutosta seuraaviin ykkösiin oli vain alettu kiinnittää liiaksi huomiota. Koko ilmiön täytyi olla vain seurueen puheilla itselleen rakentama psykologinen harha.

Asian selvitys tutkimuksella

Orastava debatti kantautui tilastotieteilijä Tuomas Kukon korviin.  Ammattilaisen korvaan tutkimusongelma kuulosti äkkiseltään naiivilta: onhan arpakuution klassiset todennäköisyydet laskettu läpi jo pimeällä keskiajalla. Toisaalta Kimblen noppakupu on sen verran pieni, että voi olla pieni mahdollisuus sille, ettei satunnaisuus pääse sen sisällä täysin toteutumaan (nopan satunnaisuuden toteutumista käsiteltiin tässä postauksessa). Niinpä tutkimusryhmä pystytettiin, ja joululoman 2014 pimeinä iltoina, osin lapsityövoimaa hyödyntäen, tahkottiin kolme tiukkaa Kimble-matsia ja kirjattiin ylös kaikki 508 nopanheittoa.

Tutkimusongelma asetettiin analyysin tehostamiseksi siten, että kaikki vastakkaiselle puolelle tapahtuneet siirtymät (1 <–> 6, 2<–>5 ja 3<–>4) oletettiin yhtä todennäköisiksi. Kuvun sisällä olevan nopan symmetrisyyttä siis ei kyseenalaistettu vaan mahdollisten epäsatunnaisuuksien oletettiin tulevan kuvun takia lähtötilanteesta riippuen.  Lähtökohtaisesti paikkansa pitävä vanha totuus, eli nollahypoteesi, oli seuraava: ”Nopan vastapäinen luku tulee yhtä todennäköisesti kuin mikä tahansa muukin luku (n. 16.7%)”.

 Mullistava tulos

Jo otteluiden aikana alkoi lukuisia aineistoja pyöritelleen kirjurin silmään vaikuttaa siltä, että kyseessä saattaa sittenkin olla todellinen ilmiö, mutta vasta aineiston analyysivaihe toi julki varsinaisen jytkyn. Nopan vastapuoli heitettiin peräti 23.9% todennäköisyydellä, eli lähes puolitoista kertaa todennäköisemmin kuin ennakolta oletettiin. Osuuksien testin perusteella laskettiin tuloksen tilastollinen merkitsevyys. P-arvo tippui prosentin sadasosiin, kun yleisesti nollahypoteesin kumotuksi toteamiseen riittävät viittä prosenttia pienemmät arvot.

Koeasetelma (otteluiden heittojen lukumäärä) oli räätälöity paljastamaan nopan vastapuolen saamisen todennäköisyyden poikkeamia odotetusta siten, että noin kolmen prosenttiyksikön heilahdus 16.7% :sta oli löydettävissä. Tässä tutkimusryhmän suureksi yllätykseksi onnistuttiin, sillä ponnautusmekanismi Kimble-kuvun sisällä on mitä ilmeisimmin roimasti oikeaa nopanheittoa vähemmän satunnainen.

 Hyödyt pelaajille

Onko tästä löydöstä mitään konkreettista hyötyä Kimblen pelaajalle? Varmasti tulee vastaan tilanteita, joissa tätä tutkimustietoa voi hyödyntää. Mietitään esimerkiksi seuraavaa tilannetta:

Idea for gameHeität noppaluvun 5 ja sinulla on kaksi mahdollista siirtoa:

  1. Siirto, jossa nappisi siirtyy KOLME askelta seuraavana heittävän napin eteen
  2. Siirto, jossa nappisi siirtyy KAKSI askelta seuraavana heittävän napin eteen

Et tietenkään halua tulla syödyksi ja tiedät, että seuraavaksi nopasta tulee todennäköisimmin luku 2. Ensimmäinen valinta on tutkimuksen tiedon ansiosta nyt parempi ratkaisu. Lisäksi joskus, lähinnä aikuisten peli-illoissa, käytetään myös sääntövariaatiota, jossa mitään nappuloista ei ole pakko liikuttaa. Tällöin tämän tutkimuksen tarjoamien valistuneiden valintojen avulla voidaan kohottaa huomattavasti omaa voittotodennäköisyyttä.

 Sivutulos

Kerätty aineisto antoi varsinaisen tuloksen lisäksi mielenkiintoisen johtolangan. Siinä missä nopan vastapuoli ponnahti esiin n. 24-prosenttisesti, niin sama luku heti perään ilmaantui vain 10.8% todennäköisyydellä. Neljälle muulle nopan kantille jäi yhteensä 65.3% (eli keskimäärin 16.3%)  todennäköisyys. Käytännössä vastakkaisen luvun lisääntyminen selittyi pelkästään saman luvun toistumisen vähentymisenä ja kuution vierekkäiset sivut noudattelivat suurin piirtein ”rehellisiä” todennäköisyyksiä. Tätä ilmiötä ei alkuperäisen tutkimushypoteesin valossa tarkkailtu, joten olisi syytä kerätä vielä uusi aineisto, jotta minimoidaan yksittäisen aineiston satunnaisoikun mahdollisuus. Näin ei langeta aiemmin käsiteltyyn vanhaan miinaan.

Jatkotutkimukset

Tutkimukseen toteuttamiseen liittyy vielä pari kyseenalaistavaa kysymystä:

  • Kaikki heitot tehtiin samalla Kimble-laudalla. Voiko tulokset selittyä viallisella laudalla?
  • Nopan ”poksautuksia” suoritti kolme eri henkilöä. Voiko heillä joku systematiikka poksautus-tyylissä, mikä selittää tutkimuksen tulokset?

Näiden epäilyjen kumoamiseksi ja sivutuloksen oikeellisuuden varmistamiseksi haastan blogin lukijat keräämään talteen heittosarjan seuraavasta Kimble-pelistä. Kirjatkaa sarjat sitten tämän postauksen kommentti-osioon. Kunhan dataa on riittävästi kertynyt, suoritetaan eeppinen jatkotutkimus.

Kimblestä järjestettiin SM-kisat viimeksi vuonna 2012. Blogin lukijoiden onkin nyt hyvä aika aloittaa harjoittelu seuraavia kisoja varten. Ja kirjata luonnollisesti samalla heittosarjat ylös jatkotutkimuksiin.

Statistickon steesit:

  1. Kimblessä kannattaa minimoida ne riskit mitkä toteutuvat pelivuorossa seuraavan vastustajan heittäessä nopasta vastakkaisen luvun
  2. Lautapelin ollessa kilpaurheilun sijaan perheen leppoisaa ajanvietettä, sitä ei kannata pilata liian syvällisellä taktikoinnilla [ terveiset tähän väliin siskolle :) ]

Teksti on kirjoitettu yhdessä analyyseista vastanneen kollega Tuomas Kukon kanssa.

 

 

 

Facebooktwitterredditpinterestlinkedinmail

Joululahjaksi laadukasta ajattelua

Tähän aikaan vuodesta useilla on pähkäilyn alla ”Mitä hankkia joululahjaksi henkilölle, jolla on jo kaikkea. Mitään turhaa krääsääkään ei viitsisi ostaa…” Oma vinkkini on tajuntaani hurjasti laajentanut kirja Thinking fast and slow tai sen suomennettu versio Ajattelu nopeasti ja hitaasti. Kirjan on kirjoittanut Daniel Kahneman, joka on tutkinut päätöksenteon psykologiaa vuosikymmeniä ja palkittu elämäntyöstään Nobelilla. Thinking fast and slow nitoo yhteen kansantajuisesti oppeja ihmisten psykologisista ajattelun luonnollisista vääristymistä verrattuna matemaattiseen rationaalisuuteen.

Miksi haluaisimme ymmärtää psykologisia heikkouksiamme?

KulutusvalintaOletko joskus huomannut ostaneesi mainoksen perusteella tuotteen, jolle ei ole juuri käyttöä löytynytkään?  Tai oletko äänestänyt vaalimainosten ja -lupausten perusteella poliitikkoa, joka ei oikeasti jaakaan samoja arvoja kanssasi? Jätän lukijan itse pohdittavaksi, kuinka paljon todellisuudessa mainostoimistot tai poliitikot pyrkivät johtamaan kuluttajia harhaan, mutta ei siitä ainakaan haittaa ole, mikäli jatkossa osaamme välttää joitain ansoja ja tehdä enemmän oikeasti hyvinvointiamme edistäviä valintoja.

Oletus rationaalisesta päätöksentekijästä

Taloussysteemimme rakenteita on pyritty ilmaisemaan taloustieteen perusteoksissa yksinkertaisin matemaattisin esityksin. Jotta tämä olisi mahdollista, joudutaan niissä usein tekemään myös hieman epärealistisia oletuksia tyyliin: ”Kuluttajat valitsevat aina sellaisen kulutusratkaisun, mikä maksimoi heidän tulevan hyvinvointinsa.” Koska tällaiset superrationaaliset yli-ihmiset ovat aika harvinaisia, ovat kriittisimmät tyypit valmiita hylkäämään koko taloustieteen ”huuhaana”. ”Juupas-eipäs”-väittelyn sijaan psykologi Daniel Kahneman on yhdessä edesmenneen Amos Tverskyn kanssa selvittänyt urallaan, millä lailla ja kuinka paljon ihmisten tyypillinen ajattelu poikkeaa rationaalisesta päätöksenteosta. Näenkin Kahnemanin&Tverskyn tutkimuksissa sillan tunteita korostavien humanistien ja kylmän rationaalisuuteen pyrkivien taloustieteilijöiden välille toistensa ajatusmaailmoihin.

Sattuman käsittely

Omaa innostusta kirjaa kohtaan ei ainakaan laske se, että Kahneman vaikuttaa myös erittäin pätevältä tilastotieteilijältä. Iso osa hänen tutkimuksistaan koskee sitä, kuinka ihminen tekee valintoja epävarmuuden vallitessa.

Ihmisten aivot kehittyvät evoluution mukana, mutta evoluutio ei ole pysynyt teknologisen kehityksen ja talouskasvun vauhdissa. Teemme herkästi ylireagointeja pienten aineistojen informaatioon, joissa on paljon sattumalla osuutta asiaan. On elonjäämisen kannalta kriittistä osata ylireagoida pieniinkiin vaaran merkkeihin, kun elämme samoilla seuduilla villien petoeläinten kanssa. Sen sijaan turvallisessa Pohjolan hyvinvointiyhteiskunnassa asuen eteen tulevissa valinnoissa ylireagointi ei ole niin hyödyllistä.

Opit rahapelaajille ja kilpaurheilijoille

Sattuman merkityksen ymmärtäminen ei ole todellakaan helppoa. Vaikka takana on vuosien työ tilastoaineistojen parissa erilaisia simulointikokeita tehden, niin sattuma vaan välillä pääsee yllättämään omissa henkilökohtaisissa asioissa, kuten itselläni oman pokerimenestyksen pohdinnassa. Jalkapallotoimittaja Lari Vesander taas avaa blogikirjoituksessaan Kahnemanin oppeja siitä, kuinka kilpaurheilun satunnaisuus hämää jatkuvasti urheiluselostajia ja valmentajia.

Ihmiset tyypillisesti kokevat rahalliset tappiot saman kokoista voittoa suurempana ja painottavat liikaa ajattelussaan pieniä, suuruusluokkaa 0.1% – 5% olevia todennäköisyyksiä. Nämä opetukset ovat myös vallitsevia teemoja pokerin oppi-isäni Tommi Verkasalon pokeripsykologiaa käsittelevässä ansiokkaassa gradussa: Voiton ja häviän vaikutus pokerinpelaajan riskipreferensseihin. Jääkiekossa tappiolla ollessa kannattaa ottaa hurjiakin riskejä (maalivahti pois lopussa) ja johdossa pelata ylivarovaisesti. Sama käyttäytymismalli toistuu kuitenkin myös pokerissa, vaikka siinä jokaisen Euron/Dollarin pitäisi olla yhtä arvokas riippumatta oletko siltä päivältä voitolla vai häviöllä.

Kahnemanin opit myös osaltaan selittävät lotto-tyyppisten arpajaisten ja vakuutusten suosiota (arpalipun hintaa ja pientä vakuutusmaksua ei yleensä koeta tappioksi). Lähinnä matemaattisen riskienhallinnan näkökulmasta kirjoittamani blogipostaukseni vakuutuksista saa kirjassa tuntemuksiin perustuvan jatko-osan.

Valintojen muokkautuminen

Vuosikymmenten akateemisia tutkimustuloksia yhteen paketoiva kirja kuulostaa äkkiseltään aika kuivalta joulupuurolta, mutta Kahneman onnistuu kirjoittamaan helppotajuisesti erilaisilla testeillä lukijaansa viihdyttäen. Yksi suosikeistani on seuraava:

Ongelma 1:

Valitse toinen:

E. 25% mahdollisuus voittaa 240$ ja 75% mahdollisuus menettää 760$.

F. 25% mahdollisuus voittaa 250$ ja 75% mahdollisuus menettää 750$

Ongelma 2:

Kuvittele, että joudut päättämään seuraavasta samanaikaisesta asiaparista. Pohdi ensin kumpaakin päätöstä ja kerro sen jälkeen, mitä valintoja (AC, AD, BC vai BD) suosit.

Päätös (i). Valitse toinen:

A. Varma 240$ voitto

B. 25% mahdollisuus voittaa 1000$ ja 75% mahdollisuus olla voittamatta mitään

Päätös (ii). Valitse toinen:

C. 750$ varma menettäminen.

D. 75%:n mahdollisuus menettää 1000$ ja 25%:n mahdollisuus olla menettämättä mitään.

Ongelma 1:ssä on helppo nähdä, että F on kannattavampi vaihtoehto ja Kahnemanin kokeessa kaikki koehenkilöt valitsivat sen. Ongelma 2:ssa tulee taas hieman vaihtelua. Kokeessa suosituin valintayhdistelmä oli AD (73% koehenkilöistä valitsi sen) ja kaikista epäsuosituin  BC (vain 3% koehenkilöistä). Nyt kun asiaa hieman tarkemmin mietitään tarvittaessa taskulaskimella summaten, niin huomataan että yhdistelmä AD on itse asiassa aivan sama kun Ongelma 1:n  E-vaihtoehto. Ja vähiten suosittu BC… aivan oikein: Ongelma 1:n F, minkä piti olla selvästi järkevämpi valinta.

Järki ja tunteetTämä esimerkki havainnollistaa kuinka helposti normaalit psykologiset ”heikkoudet” ja yksinkertaiset nyrkkisäännöt dominoivat ajattelua kun pitäisi tehdä vähäänkin haastavampaa matemaattista laskentaa. Toisaalta se havainnollista kuinka voidaan saada toinen ihminen olemaan samasta asiasta eri mieltä muotoilemalla asiaa eri muotoon tyypillisiä ajattelun vinoutumia hyödyntäen.

Itselläni tämä kirja tärähti tietokirjallisuuden TOP-listani kärkeen. Päällimmäinen ajatukseni nyt kun takakansi tuli vastaan on ”Pitääpä aloittaa heti alusta uudelleen”.

Joitain Kahnemanin teesejä normaalista ihmisestä tuntemuksineen:

  • pyrkii tekemään ensisijaisesti päätöksiä intuition ja helppojen nyrkkisääntöjen perusteella
  • pyrkii välttämään tappion tunteita ja ylisuojelemaan saavutettuja voittoja
  • aliarvioi sattuman vaikutusta ja yliarvioi oman tietämyksensä
  • korostaa huippuhetkiä ja viimeisiä tapahtumia muistojen onnellisuuden kokemisessa
Facebooktwitterredditpinterestlinkedinmail

Aika on rahaa vai miten päin se menee?

Nyt mennäänkin elämän perusasioihin. Asiaan, joka on nykyään minulle aivan itsestään selvä, mutta joka on ilmeisesti ollut blogin teeman mukaisesti verhoiltu epäoleellisten asioiden taakse nyky-yhteiskunnassa. Niin hyvin, että ensimmäiset 30 vuotta elämästäni en ole sitä ymmärtänyt vaan elänyt niinkuin raha olisi elämän keskiössä. Cash is the king vai mitä?

Elämän perusvaluutta

Aika on meidän rajallinen valuutta

Aika on rajallinen valuutta

Paljastetaan salaisuus heti niille, jotka eivät ole sitä vielä tulleet ajattelleeksi. Elämän perusvaluutta on rahan sijaan aika. Aikaa on kaikilla rajattu määrä, mutta toimillamme voimme yrittää hankkia mahdollisimman paljon laadukasta aikaa itsellemme ja läheisillemme. Tämän tavoitteen maksimoimiseen kannattaa tehdä yhteistyötä mahdollisimman monen muun ihmisen kanssa. Yhteistyön helpottamiseksi ihmiset ovat luoneet talousjärjestelmän ja raha toimii siinä pelimerkkinä, jotta voimme käydä kauppaa myös ennalta tuntemattomien ihmisten kanssa. Työssäkäyntihän on pohjimmiltaan toisten ihmisten laatuajan lisäämistä: säästössäsi oleva rahamäärä (miinus velat) pitäisi kertoa, kuinka paljon olet lisännyt (tai veronmaksajat/vanhempasi ovat puolestasi lisänneet) muiden kanssaeläjien laatuaikaa enemmän kuin itse hyödyntänyt muiden ihmisten työtä. Leipuri tekee kakun, mikä tuo nautintoa (eli laadukasta aikaa) herkuttelijoille ja saa vastineeksi rahaa. Tuhansista kakuista saaduilla rahoilla leipuri ostaa auton, jotta pääsisi nopeasti paikasta toiseen ja siten säästäisi aikaa. Jne…

Elämä ilman rahaa

Voiko elää ilman rahaa? On muutamia perusasioita, joita ilman aika loppuu ennen aikojaan. Esim. Pohjolan oloissa tarvitsemme lämpöä. Me voisimme ilman rahaakin hakata puuta metsästä ja sitä polttamalla hankkia lämpöä niin kuin historiassa on tehty iät ja ajat. Mutta säästämme huomattavan määrän aikaa, kun maksamme rahaa energiayhtiölle, jotta he lähettävät kuumaa vettä pattereihimme. Joillekin taas metsätöiden tekeminen on itsessään laatuaikaa ja he varmasti lämmittävät torppansa edelleen puulla. Ilman ruokaa taas aikamme on aluksi ikävää kitumista kunnes se loppuu ennen aikojaan. Tämän estämiseksi voimme aloittaa esim. viljelemään maata. Mutta mikäli emme ole kovin tehokkaita siinä emmekä nauti maataloustöistä, häviämme ruokaa hankkiessa kohtuuttoman paljon laatuaikaa. Siispä meidän kannattaa hankkia rahalla ruokaa maanviljelijältä, joka tykkää töistään ja on hyvä siinä.

Tässä artikkelissa on tarina monitaituri Lassesta, joka elää 70 prosenttisen omavaraisesti. Tosin hänelläkin nousee kädet ilmaan, kun pitäisi hampaita paikata ja hänen lapsensa käy normaalisti veronmaksajien rahoittamaa koulua. Lassen esimerkki kuitenkin näyttää, että on mahdollista elää ilman rahaa talousjärjestelmän ulkopuolella, mutta laatuajan maksimomisen kannalta se ei yleensä kannata.  On sekä meidän että muiden yhteiskunnan eläjien etu, että keskitymme tekemään työtä jossa olemme parhaimmillamme ja myös viihdymme. Mutta sen on tietenkin oltava jotain, mistä koituu niin paljon laatuaikaa muille, että he ovat valmiita ostamaan työpanostamme. Mitä paremmin ja tehokkaamin tämän työn teemme, sitä enemmän saamme rahaa jolla voimme hankkia muualta oman ajan määrää ja laatua kohottavia asioita.

Kohti hyvää yhteiskuntaa

Mikä taas on laatuaikaa, riippuu täysin ihmisestä. Toiselle sitä on videopelin pelaaminen, toiselle lasten kanssa leikkiminen, kolmannelle futismatsi kaveriporukassa ja neljännelle nämä kaikki. Ellei Roope Ankkaa kolikkokylpyineen lasketa, raha itsessään ei käsittääkseni ketään ilahduta, vaikka monet antavatkin näin ymmärtää. Mutta ilman rahaa on toisilleen tuntemattomien yhteiskunnan asukeiden vaikea vaihtaa erilaisia ”hyödykkeitä” keskenään.

Olemmeko tähän asti samaa mieltä? Erimielisyydet alkavat todennäköisesti viimeistään sitten, kun aletaan porukalla miettimään talousjärjestelmän yksityiskohtia (esim. mitä kaikkea tulee tuottaa yhteisvastuullisesti verotuksen avulla?), mutta se on toinen tarina. Pääasia on että erimielisyyksistä huolimatta teemme yhteistyötä  ja järjestelmä motivoi yhteistyöhön. Yksi asia on kuitenkin vielä tärkeä muistaa: mikäli maksimoimme omaa laatuaikaamme kuluttamalla luontoa nopeammin kuin se pystyy uusiutumaan, varastamme elämän perusvaluuttaa lapsenlapsiltamme.

Statistickon steesit:

  1. Laadukas aika on todellinen valuuttamme
  2. Palkkatyön tekeminen on tavalla tai toisella laatuajan lisäämistä muille yhteiskunnan jäsenille
  3. Yhteistyö auttaa sekä itseämme että muita maksimoimaan laatuaikaa
  4. Raha on kätevä apuväline palveluksien välittämiseen
Facebooktwitterredditpinterestlinkedinmail

Mistä näitä korrelaatioita oikein tulee?

Kirjoitus on julkaistu myös Louhia-blogissa 21.10.2014.

Korrelaatiokerroin on eräs mittari kahden muuttujan välisen yhteyden mittaamiseen. Mikäli termi ei ole ennestään tuttu, sen ideaan voi tutustua esim. täällä. Sosiaalisessa mediassa on kiertänyt tällainen sivusto, jonne on listattu korrelaatiolla mitattuja yhteyksiä mitä eriskummallisimpien ilmiöiden välille. Mikä nämä selittää? Hukuttautuvatko ihmiset nähdessään Nicholas Cagen tähdittämän elokuvan vai onko taulukkolaskentaohjelma mennyt sekaisin?

Korrelaatioiden lähteet

Kahden ilmiön välinen korrelaation suuruus tilastoaineistossa voi johtua seuraavista neljästä asiasta tai jostain niiden yhdistelmästä.

1. Syy-seuraus suhde

Esim. kahvin juonti aiheuttaa verenpaineen kohoamista, mutta yhteys ei toimi toisinpäin. Korkea verenpaine ei yllytä juomaan lisää kahvia. Tällaista yhteyttä kutsutaan myös kausaaliteetiksi.

Dog in the pool

2. Molemminpuolinen riippuvuus

Esim. tietyn kenkämallin kysyntä ja tarjonta: kysynnän kasvaessa yritys alkaa valmistamaan kenkiä lisää ja tarjonta kasvaa. Toisaalta jos syystä tai toisesta kenkiä on valmistettu poikkeuksellisen paljon, yritys pyrkii tehostetulla markkinoinnilla tai alennuksilla lisäämään kysyntää.

3. Ilmiöt eivät suoraan riipu toisistaan, mutta molempiin vaikuttaa joku kolmas ilmiö

Esim. jo legendaarinen jäätelön syönti ja hukkumiskuolemat. Jäätelöä syömällä uimataidot eivät häviä vaan molempien taustalla on kolmas taustatekijä; lämpötila, mikä aiheuttaa samansuuntaista vaihtelua jäätelön syönnin ja hukkumiskuolemien välille.

4. Puhdas sattuma

Esittelemäni SoMe-artikkelin esimerkki, Nicholas Cagen leffaesiintymiset ja hukkumiset uima-altaaseen vuosina 1999-2009 saattaisi hyvinkin kuulua tähän kategoriaan. Ilmeistä on, että yhteys ei tule säilymään, mikäli seurantaa jatketaan vuodesta 2009 eteenpäin tarpeeksi pitkään.

Sattuman tuottamat korrelaatiot

Jos ihmiset eivät tarkoituksella hukuttaudu katsottuaan Cagen elokuvan tai juoksentele sähkölinjoihin mentyään naimisiin Alabamassa, niin mistä näitä merkillisiä korrelaatioita sitten tulee näin paljon? Tehdäänpä pieni kokeilu. Meillä on 7 muuttujaa, jotka voivat kuvata mitä numeroilla mitattavaa ilmiöitä tahansa, mutta niin etteivät ne todellisuudessa riipu millääan tavalla toisistaan. Nimetään muuttujat nyt X1, X2, …, X7. Arvoin kaikille näille muuttujille 12 (tyypillinen otoskoko SoMe-artikkelissa) satunnaislukuhavaintoa toisistaan riipumattomasti. Järkeenkäypää siis olisi, etteivät ne korreloisi keskenään ainakaan merkitsevästi. Tulokset näkyvät seuraavassa grafiikkamatriisissa.

korrelaatiokuvaaja

Vasemmasta ylänurkasta oikeaan alanurkkaan kulkevalla matriisin lävistäjällä on aina yksittäisen muuttujan arvottuja havaintoja kuvaava histogrammi. Vasemmalla alhaalla olevat sirontakuviot kuvaavat kahden muuttujan havaintoja yhtäaikaa niin että pystyakselilla on se muuttuja jonka rivillä ollaan ja vaaka-akselilla sarakemuuttuja.

Oikealla ylhäällä olevissa ruuduissa on kyseisellä rivillä ja sarakkella olevan muuttujan välinen korrelaatiokerroin. Luku on printattu sitä isommalla fontilla, mitä suurempi (itseisarvoltaan) korrelaatio on ja vieressä on punainen tähti osoittamassa mahdollista korrelaatiokertoimen tilastollista merkitsevyyttä. Punainen piste taas tarkoittaa, että korrelaatio on ”melkein merkitsevä” mutta ei aivan ylitä tieteellistä merkitsevyysrajaa.

korrelaatiokuvaaja_yksi_pariNyt  saatiin merkitsevä korrelaatiokerroin 0.69 muuttujien X4 ja X7 välille. Kun otetaan kyseiset muuttujat vielä lähempään tarkasteluun, huomataan että nouseva suora kuvaa hyvin muuttujien välistä yhteyttä aineistossa: X4:n ollessa suuri tuppaa X7 myös saamaan suuria arvoja. Nyt jos muuttujat sattuisivat olevaan vaikka ”Sabina Särkän lehtihaastattelujen lukumäärä yhden vuoden aikana” ja ”Matti Nykäsen vuoden pisimmän hypyn pituus”, SOME-hitti on valmis ja lööpit laulaa. Vain mielikuvitus on rajana keksiessä selityksiä tämän yhteyden välille.

Todennäköisyyslaskenta on tutkijan paras kaveri

Vielä saattaa herätä kysymys, että huijasinko ja toistin arvontoja niin monta kertaa, kunnes tuli tällainen poikkeama. Todellisuudessa tässä ilmentymässä ei ole mitään poikkevaa, koska todennäköisyys saada sattumalta vähintään yksi merkitsevä korrelaatio, kun testataan 21 toisistaan riippumatonta muuttujaparia on n. 66%. Ei tarvita montakaan sataa muuttujaparivertailua, jotta saadaan kasaan SoMe-artikkelissa olevat 19 erikoista ”tilastollisesti merkitsevää” yhteyttä pelkästään sattumalta. Todellisessa tutkimuksessa on todennäköisyyslaskennan avulla syytä säätää korrelaatioiden hyväksymiskriteerejä sen mukaan, onko tärkeämpää löytää paljon potentiaalisia yhteyksiä vai välttää virheellisiä tulkintoja. Aina pitää olla hereillä, kun tekee suurista muuttujamääristä ”machine learning”-tyyppistä datan penkomista. Systemaattinen laskentaprosessi ilman todennäköisyysajattelua päätyy helposti itsensä harhaanjohtamiseen. Ja hauskoihin lööppeihin.

Statistickon steesit:

  1. Yksittäisestä aineistosta löytyy yllättävän suuria korrelaatioita sattumalta varsinkin kun havaintoja on vähän ja muuttujia paljon
  2. Tilastotieteen syvällisempi osaaminen auttaa välttämään riippuvuustutkimuksen sudenkuopat

 

Facebooktwitterredditpinterestlinkedinmail

Kaunismielistä lentopalloa

”Kaunis mieli”-elokuva on tositapahtumiin perustuva tarina peliteorian merkittävästä kehittäjästä; Nobel-palkitusta John Nashista. Ainakin elokuvan mukaan ensimmäinen peliteorian sovellus oli parinvalintatilanne opiskelijakemuissa: muiden miesten pörrätessä saman kauneimman naisen ympärillä, John laski maksimoivansa omat odotuksensa illan iloille satsaamalla huomionsa toiseksi kauneimpaan. Parhaiten nykymatematiikassa hänet tunnetaan Nashin tasapainoteoriasta. Kyse on kilpailutilanteesta, jossa kaikki osapuolet pelavaat optimaalisesti eikä kukaan saa taktista etua toista vastaan. Jos jollain kilpailijalla on isoimmat lihakset, niin se vie todennäköisimmin voiton. Mutta jos kilpailun ”lihaskimppu” ei pelaa taktisesti optimaalisesti, voi voimiltaan heikompi kääntää edun itselleen hyvällä peliteorian ymmärryksellä. Parhaiten peliteorian oppeja on otettu käytäntöön yritystalouden kilpailutilanteissa, mutta myös esim. menestyvät pokerinpelaajat käyttävät Nashin tasapainoa apuna pelistrategiaa pohtiessaan.

Peliteorian mahdollisuudet lentopallossa

Peliteorian oppeja voi kuitenkin soveltaa moniin urheilulajiin ja lentopallo on tästä erittäin hyvä esimerkki. Mietitään seuraavaa yksinkertaisettua tilannetta (kts. kuva):lentopallo_kentallinen4

Hyökkäävä joukkue, Sininen:lentopallo_kentallinen2lentopallo_kentallinen2
-Passari voi passata kolmeen paikkaan: 2-paikkaan Olli-Pekalle, keskelle Matille tai 4-paikkaan Antille. Oletuksena on, että takana 6-paikalla oleva pelaaja on tehnyt noston heittäytyen eikä ole hyökkäysvalmiudessa.

Torjuva joukkue, Punainen:
– Laitatorjujat torjuvat aina omaa laitaansa
– Keskitorjuja Mark voi joko

  • Jäädä keskelle odottamaan mahdollista keskihyökkäystä
  • Aavistaa hieman Simonin avuksi Olli-Pekkaa vastaan tai
  • Aavistaa hieman Waynen avuksi Anttia vastaan

Kuvassa näkyvät kaikille hyökkääville pelaajille tähän nimenomaiseen tilanteeseen liittyvät hyökkäystehoprosentit (todennäköisyys, että pallo päättyy oman joukkueen voittoon, jos pelaaja saa passin) kahdessa eri tapauksessa:

  1. Vastustajan keskitorjuja satsaa johonkin muuhun pelaajaan (isommat prosentit)
  2. Vastustajan keskitorjuja satsaa juuri häneen (pienemmät prosentit)

Oletetaan myös, että molempien joukkueiden tilastovalmentajilla on kattavat tilastot, joiden perusteella molempien joukkueiden valmentajat tietävät kuvassa esitetyt hyökkäystehoprosentit kaikille hyökkääjille. Tästä eteenpäin pelin voidaan olettaa olevan hyökätessä oman joukkueen pallonvoittotodennäköisyyden maksimointia ja puolustaessa vastustajan pallonvoittotodennäköisyyden minimointia.

Taktiikan kehitys

  1. Hyökkäävän Sinisen joukkueen aluksi hyvin yksinkertaisesti ajatteleva valmentaja käskisi passarin passata aina tässä tilanteessa Olli-Pekalle, koska sillä on parhaat tehoprosentit.
  2. Kun näin tapahtuu monta kertaa peräkkäin, Punaisen valmentaja huomaa toistuvat passit Olli-Pekalle ja käskee keskitorjuja Markin mennä aina Simonin avuksi pitämään Olli-Pekkaa.
  3. Kun Sinisen valmentaja huomaa tämän, hän järkeilee, ettei Olli-Pekalle enää kannata kokoajan passata. Olli-Pekan hyökkäyprosentti (65%) on vähemmän kuin esim. Matin (71%)  oletuksella, että keskitorjuja Mark aavistaa aina Olli-Pekan kimppuun. Ratkaisuksi tähän hän käskee passarin aina satunnaisesti passata 50% ajasta Olli-Pekalle ja 50% ajasta Matille.
  4. Kun Punaisen valmentaja huomaa tämän taktiikkamuutoksen, tajuaa hän että Mattiakin on pidettävä kiinni, ettei hän pääsisi tekemään pisteitä lähes vapaalta verkolta. Niinpä hän käskee Markia jatkossa satsaamaan satunnaisesti jatkossa 50% ajasta Mattiin ja 50% ajsta Olli-Pekkaan.
  5. Tässä tilanteessa pystymme esim. Excelillä laskemaan siniselle pallonvoittotodennäköisyydeksi 67.8%. Nyt Sinisen  tilastovalmentaja huomaa, missä mennään: molempien joukkueiden taktiikat huomioiden Sinisen pisteen todennäköisyys on 67.8%, mutta Antti voittaisi pallot 69% todennäköisyydellä nyt kun keskitorjuja jättää hänet aina rauhaan (samoin kun John Nashin opiskelukaverit jättivät toiseksi kauniimman naisen rauhaan). Kannattaisikohan Antillekin välillä passata?

Kohti tasapainoa

Jos edellisessä kappaleessa kuvattua valveentuneiden valmentajien (tilastovalmentajien avustuksella) käymää taktiikoiden ja vastataktiikoiden säätämistä jatkettaisiin loputtomiin, päädytään jossain vaiheessa ns. tasapainotilaan. Tällöin kumpikin joukkue pelaa sellaisella taktiikalla, jota vastaan vastustaja ei voi enää saada lisäetua muuttamalla taktiikkaa. Kiitos John Nashin, pystymme tämän tasapainotilan laskemaan. Tässä tapauksessa se olisi seuraava:

Wayne Wingman Mark Middleman Simon Sideman
Torjunnan tasapainojakauma: 7% 25% 68%
———————– ———————– ———————–
Passien tasapainojakauma: 30% 33% 37%
Antti Siltala Matti Oivanen Olli-Pekka Ojansivu

Tämä tarkoittaa, että passari valitsee satunnaisesti passin suunnan niin, että 30% todennäköisyydellä passi menne Antille, 33% todennäköisyydellä passi menee Matille ja 37% todennäköisyydellä passi menee Olli-Pekalle. Toisaalta Mark aavistelee 7% ajasta Antin suuntaan, 68% ajasta Olli-Pekan suuntaan ja 25% ajasta jää odottamaan passia keskelle. Käytännössä tällainen pelitaktiikka pitäisi toteuttaa pesäpallosta tutun merkkiviuhkan kanssa: tilastovalmentaja arpoo seuraavan siirron tietokoneella tilanteeseen sopivasti painotetulla satunnaisgeneraattorilla ja näyttää salaisen merkin pelaajille.

Kun pelaajat pelaavat tasapainon mukaisesti, niin näissä tilanteissa Sininen voittaa pallon 68.2% todennäköisyydellä.

Onko Nashin tasapaino optimaalinen pelitapa?

Vastaus otsikon kysymykseen: ei välttämättä. Tasapainon mukaan pelaaminen varmistaa sen, ettei vastustaja voi saada taktista etua joukkuettamme vastaan. Näin ollen se on paras lähtökohta kun vastassa on taktisesti valveutunut joukkue. Mutta jos vastustaja poikkeaa tasapainosta ja me tiedetään se, niin meidänkin kannattaa adjustaa taktiikkaa vastustajan mukaan. Palataan esimerkissämme taktiikan kehityksessä kohtaan 4. ja oletetaan nyt Punaisen valmentajaksi tilastoista piittaamaton jääräpää. Hän käskee Markin keskittyä aina vain Mattiin ja Olli-Pekkaan. Nyt Sininen joukkue saa taktiikalla ”ilmaisen lounaan” passaamalla aina Antille: tasapainotaktiikan 68.2% muuttuu nyt 69%:ksi.

Kurkistus todellisuuteen

volleyball competitionJohn Nash aikanaan sairastui skitsofreniaan matemaatikon uransa aikana. Yritetään me kuitenkin vielä pitää ajatukset lähellä todellisuutta. On selvää että esitettyssä esimerkissä on jouduttu tekemään monia yksinkertaistuksia todellisiin tilanteisiin verrattuna. Prosenttien kymmenyksen verran laskimen näytöllä etua tuovat taktiikka-muutokset ovat käytännön epävarmuuksista johtuen yhtä tyhjän kanssa. Tärkein tapa kehittää joukkueen peliä on edelleen harjoituttaa hyökkäystaitoja, jotta omat tehoprosentit nousee ja harjoittelemalla puolustamista, jotta vastustajan tehoprosentit laskee. Jos kuitenkin vastustajalle antaa useita prosenttiyksikköjä ylimääräistä taktista etua joka pallossa niin varmasti se näkyy myös ottelun lopputuloksessa. Peliteorialla olisi varmasti annettavaa monille lentopallojoukkueille, vaikkei sitä prosentin kymmenyksien tarkkuudella pystyisikään toteuttamaan.

Tämä kirjoitus on kirjoitettu yhdessä Mestaruusliigan ex-tilastovalmentaja Johannes Ärjen kanssa. Esimerkissä käytettyjen pelaajien nimet ja niihin liittyvät hyökkäystehoprosentit ovat keksittyjä. Jos jollakin todellisella pelaajalla on sama nimi, niin se on puhdasta sattumaa. Voit kokeilla itse laskea tasapainojakaumia erilaisiin tilanteisiin Ärjen tekemällä laskurilla.

Facebooktwitterredditpinterestlinkedinmail

Taistelu muiden informaatioetua vastaan

Olisi helppoa tehdä fiksuja ratkaisuja, jos tietäisi enemmän kuin kukaan muu. Näin ei juuri koskaan ole, mutta päätöksiä pitäisi silti tehdä. Aiemmassa postauksessani Eetu Extremeurhilija oli mukana kilpailussa, jossa piti ennustaa mahdollisimman hyvin huomisen säätä. Eetulla oli vähemmän tietoa käytettävissä kuin muilla ja näin ollen olisi tarvinnut pläjäyksen tuuria voittaakseen. Seuraavassa käydään läpi, mitä Eetun asemassa voimme tehdä etumatkan kutistamiseen ”paremmintietäviin” nähden. Esimerkkeinä toimii valintatilanteet osakesijoittamisessa, urheiluvedonlyönnissä ja asunnon ostossa.

Osakesijoittaminen

Akten Ordner mit Kette verschlossenSisäpiirisäädökset kieltävät pörssiyrityksen ytimeen kuuluvien henkilöitä käymästä kauppaa yrityksen osakkeilla ajanjaksolla, mikä käsittää kaksi viikkoa ennen neljännesvuosituloksen julkistamista. Tämän ajatellaan olevan aikaa, jolloin tulos alkaa olla hyvin hahmottunut sisäpiiriläisillä, mutta sitä ei ole vielä julkistettu. Sisäpiiriläiset eivät saa koskaan myöskään paljastaa ulkopuolisille yhtiön osakkeiden arvoon vaikuttavia tietoja ennen virallista tiedotusta. Nämä ovat piensijoittajan kannalta loistavia lakeja ja tarjoavat jonkinasteista tasavertaisuutta.

Ehkä olen kuitenkin kyyninen persoona, koska en usko että sisäpiirilaki toteutuu käytännössä täysimääräisenä. Vaikea uskoa, että kaikki pystyisivät olemaan niin jämäköitä, etteivät saattaisi jotain lipsauttaa ”pienellä kiertoilmaisulla” mukavalle kaverille parin tarjotun tuopin jälkeen. Toisekseen yhtiön osakkeilla voi käydä kauppaa henkilöt, jotka ovat töissä firmassa ja kohtuullisen hyvin hajulla seuraavasta tulosjulkistuksesta vaikka eivät aivan sisäpiirirekisteriin kuulukkaan. On siis turvallista ajatella: ”Jotku toimijat markkinoilla aina tietävät enemmän kuin minä.”

Paremmintietävien informaatioetua voi kuitenkin minimoida ainakin kahdella tavalla

1. Tee ”buy and hold” sijoituksia. Älä harrasta aktiivista kaupankäyntiä.

Informaatioedun puute konkretisoituu, kun joudut tekemään sijoituspäätöksen. Näiden päätöksien lukumäärän saat minimoitua ostamalla osaketta ja istumalla sen päällä loppuelämän osinkoja keräillen.

2. Ajoita sijoitukset heti osavuosikatsauksen jälkeen.

Heti osavuosikatsauksen jälkeen on se ajankohta, jollon julkisen tiedon määrä yrityksen tilasta on maksimissaan. Sijoitusmarkkinoiden käyttäytymistä edellisen tulosjulkistuksen (Q2, 2014) jälkeen eri suomalaisten pörssiyhtiöiden kohdalla on ansiokkaasti koottu täällä.

Urheiluvedonlyönti

Yleisin tapa joukkuelajien vedonlyönnissä saada informaatioetua on tietää ensimmäisten joukossa joukkueiden kokoonpanot. Mikäli et kuulu niihin onnellisiin, joille sisäpiiristä tihkutaan ennakkotietoja, on vedonlyönnin ajoituksella merkitystä. Sinulla on kaksi mahdollisuutta päästä paremmintietävien sisäpiiriläisten kanssa lähes samalle viivalle:

1. Jätä vetosi mahdollisimman aikaisin, ennen kun joukkuiden valmentaja päättää kokoonpanoista

Jos valmentaja itsekään ei vielä tiedä lopullista kokoonpanoa, niin kuka muukaan sitä voisi tietää? Jättämällä vedot hyvissä ajoin, joudut tekemään valistuneita arvauksia odotetusta kokoonpanosta samalla lailla kuin kaikki muutkin vedonlyöjät ja vedonlyöntitoimistot.

2. Jätä vetosi juuri ennen ottelun alkua, kun kokoonpanot ovat kaikkien tiedossa

Viimeisen puolentunnin aikana ennen ottelun alkua kokoonpanot ovat yleensä jo julkisesti tiedossa ja paremmintietävien etumatka kaventunut minimiin. Tässä on kuitenkin hyvä muistaa, että lajeissa joissa liikkuu isot rahat, viimeisten hetkien vedonlyöntimarkkinat ovat nykyään jo aika tehokkaat ja ylikertoimia (joukkueen voittotodennäköisyyteen verrattuna liian suuri kerroin, minkä lyöminen on tuottoisaa pitkällä tähtäimellä) on vaikea löytää.

Asunnon osto

Asunnon ostaminen on useimmille rahallisesti elämänsä suurin valintatilanne. Kansalaisten informaation tasoa tasoittaakseen Ympäristöministeriö ylläpitää tilastopalvelua, jossa voi hakea viimeisen vuoden aikana toteutuneita asuntokauppoja erilaisten kriteerien perusteella. Kiinteistövälittäjien informaatioetua tämä palvelu ei kuitenkaan täysin poista, koska heillä on käytössään paljon yksityiskohtaisemmat kauppatilastot pidemmältä ajanjaksolta. Palvelua käytettäessä on vielä muistettava, että usein rajatut haut tuottavat niin vähän tuloksia, että yksittäisiin asuntoihin liittyvät poikkeavuudet vääristävät liikaa kokonaiskuvaa.

Käsittele tietoa paremmin

??????????????????Puhutaanpa sitten sijoittamisesta, vedonlyönnistä tai mistä tahansa muusta päätöksenteosta, on yksi asia, mitä voi tehdä paikatakseen puutteellista absoluuttista informaatiota: käsittele käytettävissä olevaa tietoa paremmin.

Joskus tiedon parempi käsittely tarkoittaa analyysimenetelmien teknistä opettelua ja havaintojen muuttamista numeroiksi. Kuinka paljon jääkiekkojoukkueen voittotodennäköisyys tippuu, kun luotettavan maalivahdin (jäällä yleensä koko ottelun) sijaan kokematon juniori on pelivuorossa ja samalla tulee tieto, että vastustajan tähtilaitahyökääjä (jäällä n. 20 min ottelussa) on loukkaantunut?

Usein saa etua muihin kun yksinkertaisesti ymmärtää olemaan ylireagoimatta pienten aineistojen informaatioon. Ellei ilmiölle ole taustalla vahvaa selitysehdotusta, mitä ei keksitty vain käsiteltävien havaintojen perusteella, pienten otoksien tulokset ovat yleensä merkityksetöntä kohinaa. Tämä siitäkin huolimatta, että toimittajat mielellään nostavat esiin kaivelemalla kaivettuja ”tilastofaktoja” tyyliin ”Kalpa on voittanut putkeen jo viisi peliä, jotka on pelattu kotona parittomien viikkojen torstaina.” (Voit lukea lisää  taustahypoteesien merkityksestä edellisestä postauksesta)

Kerrostaloasuntojen arvottamiseen liittyvä informaation käsittely on tehty poikkeuksellisen helpoksi ASLA-asuntolaskurin avulla (laskurin isä on bloggari itse, mutta Pinjalle iso kiitos kehitystyöstä). Parin havainnon sijaan laskuri antaa kerrostalohuoneistolle arvion tuhansien julkisten kauppatietojen perusteella laskettuun tilastomatemaattiseen malliin. Lisäksi käyttäjälle on tarjoalla työkaluja hallitsemaan sitä vaihtelua hinnoissa, mikä ei suoraan välity julkisista myyntitilastoista.

Statistickon steesit:

  1. Hyväksy, että joillain muilla on enemmän tietoa käytettävissä
  2. Kiri muiden informaatioetumatkaa ajoittamalla päätökset tasapuolisiin ajankohtiin ja käsittelemällä tietoa paremmin

Blogissa esitetyt ajatukset perustuvat kirjoittajan vuosien varrella hahmottuneisiin näkemyksiin, joihin ovat vaikuttaneet omat tiedonjalostuskokemukset ja lukuisat ulkoiset vaikuttajat. Toisinaan näkemykset osoittautuvat myöhemmin vääriksi. Kommentoithan, mikäli pystyt perustelemaan toisenlaisen näkemyksen.

Facebooktwitterredditpinterestlinkedinmail

Tutkimushypoteesit ja pokerimenestys

Virheelliset tutkimukset

Tutkimusaineistoista löytyy aina jotain merkillisyyksiä pelkästään sattumalta, kun datoja tarpeeksi paljon pyöritellään ja kaivellaan. Jos testaamme juuri niitä hypoteeseja, mitkä tulivat mieleen aineiston erikoisuuksia kaivelemalla, niin tottakai saamme tilastollisesti merkitseviä tuloksia. Tulokset eivät vaan ole päteviä, koska riippumattomuusoletukset eivät täyty. Tämä onkin ehkä yleisin tilastojen väärinkäyttötapa, jonka takia maailmassa on julkaistu hurja määrä tutkimustuloksia, mitä ei ole enää seuraavassa saman alan tutkimuksessa pystytty toistamaan (viite). Itse olin lähellä sortua vastaavaan tutkimuskentällä yleiseen virheeseen, kun olin turhautunut omasta heikosta menestyksestäni pokeripöydissä.

Tuuri pokerissa

Pokerimenestyksen tutkiminen

Pokeri on peli, joka on olemukseltaa jossain shakin (pelissä ei tuurielementtiä, parempi pelaaja voittaa) ja ruletin (puhdas tuuripeli) välimaastossa. Matemaattisilla ja psykologisilla taidoilla voi saada edun muita pelaajia vastaan, mutta sattumalla on suuri vaikutus siihen, kuinka yksittäisessä pelissä käy. Itse olen harrastanut pokeria pääasiassa ”texas hold’em sit and go”-turnauksina, joissa matemattiset taidot korostuvat. Nettipokerissa menestyminen oli pari vuotta sitten vielä merkittäväkin tulonlähde, mutta viime vuosi 2013 oli tappiollinen, eikä menneillä oleva alkuvuosikaan ole tuonut vielä suurta parannusta. Nyt mieltä vaivaava kysymys kuuluu: ”Onko lähimenneisyyden huono tulos selitettävissä sattumalla vai pelaavatko vastustajat nykyään paremmin (tai minä huonommin) kuin aikaisemmin?”.

Tilastot turnauksista

Oman nettipokerituurin (ja vastustajien pelityylien) selvittämiseksi olen onneksi vuosi sitten hankkinut apuohjelman, joka kerää aineistoa pelaamistani turnauksista jälkianalyysejä varten. Tilastot paljastavat, että tappiot selittyvät yhden pokerifirman, kutsutaan sitä vaikka nimellä ”Täystöötti”, peleillä. Tällä pokerisivustolla olen pelannut valtaosan peleistäni.

Graafissa punainen käyrä kertoo, mikä todennäköisyyksien mukaan tulokseni pitäisi olla, jos ”all-in” tilanteissa tuurini olisi ollut keskimääräinen. Vihreä käyrä kertoo, mikä todellinen tulokseni on ollut turnausmaksuina. Karkeasti voisi yksinkertaistaa seuraavasti: Mikäli punainen käyrä on nollan yläpuolella, on pelaaja ollut turnausmenestyksen kannalta hyvissä tilanteissa kun kaikki rahat menevät pottiin ja piilokortit käännetään esiin. Jos vihreä käyrä on punaisen käyrän yläpuolella, niin pakasta tulleet viimeiset ratkaisukortit ovat olleet keskimääräistä suotuisampia (ja vastaavasti heikompia, kun ollaan punaisen käyrän alapuolella).

meh_graafi_cannon_180714

Menestys ja ”pakkatuuri”-korjattu menestys Täystöötin peleissä.

hem_graafi_pspp_18072014

Menestys ja ”pakkatuuri”-korjattu menestys muissa kun Täystöötin peleissä.

Täystöötin peleissä vaikuttaisi olleen järkyttävän huonoa tuuria, koska toteutunut käyrä (vihreä) on n. 140 turnausmaksua ”pakkatuuri”-korjatun (punaisen) käyrän alapuolella. Muiden firmojen peleissä taas käyrät käyttäytyvät niinkuin pitkässä juoksussa pitäisikin, eli seurailevat toisiaan. Tässä vaiheessa useimmilla tappion lyömillä pelaajilla herää epäilyksiä, että  Täystöötti huijaa minun vastustajieni eduksi tai vähintäänkin heidän satunnaisgeneraattoriin on lipsahtanut koodausvirhe. Tämän jos voisi tilastollisesti todistaa, niin voisi alkaa vaatimaan heiltä korvauksia tai vähintään boikotoimaan sekä mollaamaan foorumeilla. Jos näillä aineistoilla lähtisin asiaa tilastollisesti testaamaan niin epäilemättä saisin erittäin merkitseviä tilastollisia todistuksia vinoutuneesta satunnaisgeneraattorista. Laajasta menetelmä-työkalupakistani huolimatta en näin kuitenkaan tee.

Tutkimushypoteesi

Meillä olisi nyt seuraava tutkimushypoteesi, mitä lähdettäisiin todistamaan vääräksi:

H0: ”Täystöötin pokeripelien satunnaisgeneraattori on rehellinen”

Testien lopputulokset ovat usein muotoa ”On alle 5% mahdollisuus, että aineistossa ilmenevä poikkeama hypoteesista johtuisi sattumasta. Näinollen hypoteesi ei pidä paikkaansa ja tulos on tilastollisesti merkitsevä”. Huono uutinen tutkimuksellemme on se, että keksimme hypoteesin aineistomme avulla. Tilastolliset testit taas vaativat, että käytössä on hypoteesista riippumaton satunnaisotos.

Tutkimuksen jatko

Parasta mitä tässä tilanteessa voimme tehdä, on alkaa keräämään uutta aineistoa, jolla voimme testata, pitääkö havaitsemamme poikkema todella paikkansa. Tutkimussuunnitelma on nyt seuraava: pelaan 3000 uutta turnausta. Näistä hyväksyn tutkimukseen joka kolmannen aloittaen kolmannesta. Tällä pyrin ehkäisemään peräkkäisten turnausten mahdollista korrelaatiota, mikä on seurausta samoista vastustajista tai edellisen turnauksen lopputuloksesta johtuvasta tunnetilasta. Tämän jälkeen meillä on käytössä myös hypoteesista riippumaton satunnaisotos validin tutkimuksen tekemiseksi.

Entäs silloin kun meillä on vain yksi aineisto, eikä sitä ole tulossa lisää lähitulevaisuudessa? Tutkimushypoteeseja ei ole voitu asettaa etukäteen tai niitä on paljon. Toteammeko, että aineisto on hyödytön ja heitämme kirveen kaivoon? Toki datan antama singnaali on aina jonkunlainen vihje todellisuuden tilasta. Meillä vaan tulee ongelmia todennäköisyyslaskelmissa kun halausimme arvioida kuinka suurella varmuudella voimme yleistää signaalin koskemaan todellisuutta aineiston ulkopuolella. Tapauksesta riippuen voimme joko tehdä korjauksia menetelmien todennäköisyyslaskelmiin tai erottaa ja säästää osa aineistosta tuloksien varmentamiseen. Näistä tekniikoista sekä Täystöötin satunnaisgeneraattorin testaamisen tuloksista lisää myöhemmissä blogipostauksissa.

Statistickon steesit:

  1. Tutkimushypoteesi pitää asettaa ennen tutkimusaineiston tarkastelua
  2. Dataa tutkiskelemalla löytynyt yllättävä seikka on enemmän hypoteesi uudelle tutkimukselle (uudella datalla) kuin yleistettävissä oleva tulos
Facebooktwitterredditpinterestlinkedinmail

Jalkapalloanalytiikan kulta-aikaa

group watching football matchNäin jalkapallon MM-kisojen kynnyksellä elämme analytiikan kulta-aikoja. Ihmiset laidasta laitaan kiinnostuvat analysoimaan jalkapallojoukkueita ja yrittävät löytää taikakaavaa voittajan ennustamiseen. Työyhteisöjen kisaveikkaukset saavat harvemminkin urheilua seuraavat sukeltamaan hetkeksi veikkausten ihmeelliseen maailmaan. Mutta tästä lisää kirjoituksen lopussa. Katsotaan kuitenkin ensin, kuinka mediassa taho jos toinenkin on valjastanut tilapäisen analytiikkainnostuksen huomion keräämiseen.

Kosmofyysikko jalkapallon pauloissa

Tässä artikkelissa fyysikko Stephen Hawking kokeilee siipiään tilastotieteilijänä analysoimalla Englannin menestymismahdollisuuksia edellisten maailmanmestaruuskisojen perusteella. Hänen tutkimustuloksensa paljastaa mm. seuraavaa Englannin menestymiseen liittyen:

  • Englannin kannattaa käyttää punaisia paitoja valkoisten sijaan
  • Taktiikka ”4-3-3” toimii taktiikkaa ”4-4-2” paremmin
  • Eurooppalainen tuomari parantaa voittotodennäköisyyttä eteläamerikkalaiseen verrattuna
  • Korkealla pelaaminen murskaa Englannin voittomahdollisuudet

Olipa Hawkingin saavutukset fysiikan saralla kuinka kovat tahansa, niin tilastotieteilijänä on vielä petraamisen varaa. Jo tuon lehtiartikkelin perusteella hän onnistuu sortumaan useaan aloittelijan virheeseen analyysissaan. Toki näiden lehtijuttujen ensisijainen tarkoitus on tarjota vain ”höpöhöpö”-viihdettä, mutta koska juttuun on sotkettu oikea tiedemies, yritetään avata joitain ilmenneitä hämäryyksiä ja selviä virheitä:

  1. Valikoitu aineisto? Aineistona on MM-vuodesta 1966 lähtien. Miksi juuri tähän on aineisto rajattu? Eihän vaan Englannin kotikisoilla 1966 ole jotain tekemistä ”valinnan” kanssa?
  2. Aineiston käyttökelpoisuus?”Logistinen regressio” on varsin etevä analyysityökalu monien todennäköisyyksien mallintamiseen, kun aineistona on nykyhetkenkin populaatiota kattavasti kuvaava satunnaisotos. Kuinka hyvin 1960-luvun joukkue tai MM-kisat ylipäätään kuvaa nykypäivän joukkuetta tai kisoja?
  3. Aineiston koko? Tutkimuksessa on mukana kokonaista 12 turnausta (kisojen lukumäärä vuodesta 1966 alkaen). Jos Englanti pelaisi keskimäärin 5 ottelua turnauksessa, olisi tutkimuksen otoskoko 60. Aineiston riittävyys luotettaviin päätelmiin riippuu paljon siitä, kuinka montaa eri muuttujaa on tarkoitus tutkia. Jos huomioidaan vaikka pelkästään mainitut kolme luokittelevaa tekijää (puna/valkea pelipaita, ”4-3-3″/”4-4-2” taktiikka, eurooppalainen/etelä-amerikkalainen tuomari), jakautuu aineisto 2 * 2 * 2 = 8 osaan. Jokaiseen osioon jää siis keskimäärin 60 / 8 = 7.5 havaintoa. Pelipaidan väri tuskin on kuitenkaan ollut tutkimuksen pääkohde vaan haiskahtaa, että tässä on tutkittu lisäksi hyvin monia muitakin muuttujia, mutta nämä ovat nyt tällä kertaa sattuneet putkahtamaan esiin.

Tutkimuslöydöksiin liittyvästä epävarmuudesta ei artikkelissa puhuttu mitään, mutta ei tarvitse olla Einstein (Hawkingin esikuva) arvatakseen, ettei se taida kestää päivänvaloa.

Jalkapallovedonlyönti – kuin rahaa laittaisi pankkiin?

Toinen vastaantullut yritys on maailman mahtipontisimman pankin Goldman Sachs tekemät ennusteet. Tässä tutkimuksessa on päästy eroon monista Hawkingin ongelmista ottamalla mukaan kaikki muutkin maaottelut kuin MM-kisat lähes sadan vuoden aikana. Joukkueiden tasoerojen muutoksia on pyritty kontrolloimaan edeltävien pelien avulla automaattisesti joukkeiden taitotasoa pisteyttävällä ELO-menetelmällä. Lisäksi tutkimuksessa on pelipaitojen värin sijaan keskitytty oleellisiin muuttujiin.

Koneisto antaa paljon ihan uskottavan suuruisia arvioita, mutta esim. Brasilia saa pelottavan suuria todennäköisyyksiä: tutkimuksen mukaan Brasilia tulee voittamaan kotikisansa 50% todennäköisyydellä. Tutkijat lopussa myöntävätkin, että heidän käyttämämä ELO-pisteytys korostaa mahdollisesti liikaa aivan viimeisiä tuloksia ja Brasilialla sattuu olemaan juuri nyt alla suurinumeroiset voitot kovista maista viime kesältä( 3-0 vs. Espanja ja 4-2 vs. Italia). Lisäksi tutkimuksen mallissa on suuri painoarvo MM-kisojen kotiedulla, minkä voisi epäillä hieman laimenneen historian saatossa, vaikka 1930-1970-luvuilla nähtiinkin paljon kotimestaruuksia.

football bet slipKyseessä on sinällään mielenkiintoinen ja kunnianhimoinen yritys mallintaa tilastollisin menetelmin todennäköisyyksiä ilman syvällistä jalkapallo-osaamista. Tutkijat oikeaoppisesti myös testaavat menetelmän tomivuutta vuoden 2010 kisojen otteluihin ennen sitä tunnettujen tietojen avulla ja tulevat siihen lopputulokseen, että sattumalla on hyvästä analyysista huolimatta suuri vaikutus lopputuloksiin. Firman kannattaa siis edelleen keskittyä jauhamaan rahaa pankkibisneksillään. Internetin vedonlyöntimarkkinoilla vahvimmilla ovat ne, jotka historiadatan hallitsemisen lisäksi osaavat muuttaa numeroiksi yksittäisten pelaajien taitotasot ja joukkueen pelitaktiikan sekä yhteensopivuuden vastustajan taktiikkaa ja pelaajia vastaan. Nykypäivänä menestyvä vedonlyönti on siis yhdistelmä pitkälle vietyä lajituntemusta ja tilastotiedettä.

Itselläni ei futistietämys riitä vedonlyöntimarkkinoilla riittävän hyvään todennäköisyyslaskentaan, mutta sen sijaan osaan hyödyntää joitain vedonlyöntimarkkinoilla olevia tehottomuuksia. Näistä kiinnostuneiden kannattaa olla hereillä Twitterissä lähipäivinä.

Statistickon steesi:

  • Tilastomenetelmien turvallinen käyttö vaatii tutkittavan aiheen sisältöosaamista ja aineiston soveltuvuuden kriittistä arviointia

Bonussteesit työporukkaveikkauksiin (ei vielä tieteellisesti todistettuja):

  • Maalien tarkkuudella annetuissa tulosveikkauksissa yllätykset osuvat liian harvoin. Todennäköisin lopputulos on yleensä aina ’1-1’, mikäli ottelu on vähääkään tasaväkinen. Jos toinen joukkue on selvä suosikki, kannattaa veikata ’1-0’ ja murskasuosikille ’2-0’
  • Kannattaa valita yksi ”idea-joukkue”, jolla on hyvät mahdollisuudet päästä pitkälle, mutta jota muut kisan veikkaajat eivät ehkä osaa arvata.  Nyt potentiaalinen musta hevonen voisi olla jokin vähemmän tunnettu Etelä-Amerikan maa kuten Uruguay, Kolumbia tai Chile.
  • Pääasiassa kannattaa suosia todennäköisiä menestyjiä ja lopputuloksia, mutta pelkkiä yleisiä suosikkeja veikkaamalla on vaikea nousta veikkauksen kärkiryhmästä voittajaksi.  Sen takia voittaja tarvitsee ripauksen tuuria ”idea-joukkueensa” onnistumisen muodossa.
Facebooktwitterredditpinterestlinkedinmail